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Computational Software for Building Biochemical Reactietwork Models
with Differential Equations

Nicholas A. Allen

Abstract

The cell is a highly ordered and intricate machine within etha wide variety of chemical processes take place.
The full scientific understanding of cellular physiologyuéres accurate mathematical models that depict the tem-
poral dynamics of these chemical processes. Modelers malthiematical models of chemical processes primarily
from systems of differential equations. Although devehgphew biological ideas is more of an art than a science,
constructing a mathematical model from a biological iddargely mechanical and automatable.

This dissertation describes the practices and procesaekithogical modelers use for modeling and simulation.
Computational biologists struggle with existing toolsdoeating models of complex eukaryotic cells. This dissiena
develops new processes for biological modeling that makaefreyeation, verification, validation, and testing lesa of
struggle. This dissertation introduces computationairgne that automates parts of the biological modeling sce
including model building, transformation, execution, lgses, and evaluation. User and methodological requirdmen
heavily affect the suitability of software for biologicaladeling. This dissertation examines the modeling software
terms of these requirements.

Intelligent, automated model evaluation shows a tremesgotential to enable the rapid, repeatable, and cost-
effective development of accurate models. This disserigiresents a case study that indicates that automated model
evaluation can reduce the evaluation time for a buddingtymasdel from several hours to a few seconds, represent-
ing a more tharl 000-fold improvement. Although constructing an automated ei@Valuation procedure requires
considerable domain expertise and skill in modeling andikition, applying an existing automated model evaluation
procedure does not. With this automated model evaluatiooguiure, the computer can then search for and potentially
discover models superior to those that the biological merdaleveloped previously.
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Chapter 1

Introduction

A cell is a highly ordered and intricate biochemical mactsnerounded by membranes, in which a wide variety of
complex chemical processes take place. These chemicags®s form a tightly-coupled biochemical reaction net-
work that interacts with both the changing environment &edtevelopment that occurs within the cell. Understanding
the behavior of these chemical processes is vital for deugdomany new biological applications.

A biochemical reaction network is more complicated tharstima of its pieces. Just as the dynamical behavior of a
large and complex electrical system is not obviously apganets wiring diagram, the dynamical behavior of a large
and complex regulatory network is not obviously appareehewvhen biologists know the component pieces, such as
the genes and proteins that interact in the chemical preseBsirthermore, experimentalists struggle to make atxura
measurements of processes without disturbing the livistesy. Although cells are collectively robust, an indivilua
cell is a delicate and carefully-balanced chemical systeahthe experimentalist can easily perturb in uncontrédlab
ways. Without an effective means of experimental contnole@perimentalist cannot readily gather information that
advances the state of understanding about the biologistdrsy

From a hypothesis about a biological system, the experiafishinust determine the important measurable quan-
tities in the living cell. Then, the experimentalist musher carefully manipulate the cell to acquire measurements
without disturbing the behavior of the system, or design pedorm a new experiment that produces equivalent re-
sults. Often, the experimentalist must construct an aglfigystem that duplicates specific properties of the living
cell, conduct measurements in the artificial system, and degnonstrate that those observations truly correspond to
the behavior inside the cell. Performing biological laliorg experiments remains a laborious and time-consuming
exercise despite the development of improved methodsnigeées, and tools over the past centuries.

Acquiring high-quality experimental data is a slow and exgiee process that cannot keep up with the pace at
which biologists produce new hypotheses. Although a bistatan sketch out the idea for a biochemical reaction
network in the form of a wiring diagram in a matter of hoursyfpeming laboratory experiments to justify that
biochemical reaction network can take months or years faxgerimentalist to complete. Moreover, the complexity
of the hypotheses is forever increasing. Many hypotheses gouuntested because the biologist cannot perform or
obtain the corresponding laboratory work. The biologiaahmunity is in need of practices that can help validate
hypotheses without consuming undue time or resources iargwrpntal laboratories. Often, a biologist has a fixed
collection of experimental evidence about a biochemicattion network and must get the most out of that evidence
when building a model. This dissertation focuses on maxigithe value of existing experimental evidence.

The latency in testing a hypothesis delays the applicatiorew biological ideas to other scientific fields that are
critically dependent upon basic biological research teetigyproducts. One approach for alleviating this bottl&nec
is the use of quantitative and mathematical modeling ofdgjimlal systems to test hypotheses without the laborious
construction of laboratory experiments. Although manyewalar biologists are not accustomed to this computational
approach for scientific exploration, a growing minority ablogical practitioners has adopted modeling methods
and practices. These biological modelers unfortunatelgtrmork largely without the aid of robust and specialized
modeling tools. In the past several years, many groups Heempted to remedy this lack of tools by creating software
supportive.of.computationalbiology, biological modelilmgd systems biology efforts.

1
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2 CHAPTER 1. INTRODUCTION

1.1 Modeling and Simulation

A model is an artificial construct that reproduces the paldidy desired behaviors and properties of a natural system
Although it is possible to build models with different forpmich as physical, logical, or mathematical models, this
dissertation focuses on mathematical models of biologigstems. Modelers attempt to capture the salient propertie
of their biological system with mathematical equationsteAperforming experiments on the model, a modeler then
relates the results of the model experiment to an equivabgreriment in the biological system.

Simulation is a method for studying the evolution of modehdegors over time. The term ‘simulation’ implies
that the model captures the studied system imperfectlipgperby omitting some details. When the modeler attempts
to perfectly replicate a natural system, the preferred tiemthese activities is ‘emulation’. The modelers that this
dissertation describes do not attempt to perfectly regitlae cell and so use simulation as their primary means of
studying a model. Moreover, it is doubtful that modelersldawonceivably replicate the complex behaviors of a cell
without error given the currently available computatioresources.

Although simulation has a heavily developed theory withia field of computer science, the practice of modeling
and simulation is still more of an art than a science. Thisatisition explains how biological modelers perform cartai
modeling and simulation activities. Modelers often leabowet modeling and simulation through the experience of
building models rather than through formal learning. Manydaling and simulation experts have published guides
based on specific past experiences. However, few handboaksstructional materials explain how to perform
modeling and simulation well for new and emerging fields.

Biologists can employ modeling and simulation to test thipotheses about a biochemical reaction network.
Although testing the actual system is either too dangerouwost prohibitive, the cost of building a mathematical
model of the biological system and performing experimentthat model frequently is less than the cost of laboratory
experimentation. Since the decisions that biologists naal@result of modeling and experimentation have significant
consequences, it is crucial that the developed models adibte and reliable, and that biologists understand the
limitations of their modeling and simulation efforts. Déwgers, users, decision makers, and those impacted by the
outcome of the model are all concerned with whether the miedmrrect [121].

Model verification, validation, and testing activities @ss the accuracy of a model. Performing these activities
also improves the credibility and reliability of a model. elpractice of model verification, validation, and testing is
essential to the consistent production of models that asfuliand correct. Balci [19] and Sargent [121] provide a
comprehensive overview of model verification, validatitasting, and accreditation.

Model verification is the process of certifying that transfations of the model from one form to another maintain
the fidelity of a model. Model verification ensures that thededer transforms the model as they intended and that
the modeler preserves the accuracy of the model over timeleMw tools that support model verification allow the
modeler to check that the tool operates in the manner thantideler assumes. Model verification checks that the
process of building the model is correct.

Model validation is the process of determining whether a ehadfficiently approximates the real system. The
definition of the term ‘sufficiently’ depends upon the purpoa$the model. Increasing the validity of a model has cost,
so as Balci and Sargent [24] state, it is most efficient tousatal the model with respect to its intended application.
Therefore, the purpose of the model dictates which aspeeim@ortant to validate and the standards that the modeler
should apply. Different modelers may have different inethgurposes for a model. Therefore, it is possible for a
model to pass the criteria for acceptability for one modelgmot for another modeler.

Model testing is the process of checking for errors in the eholodel testing determines if the model is func-
tioning properly by subjecting the model to controlled itpuThe modeler designs a model test to perform model
verification, model validation, or both activities.

The model experiments that the modeler uses for testingrdte the domain of acceptability for the model.
Although one form of model experimentation is to comparertfuaelel with historically-collected laboratory experi-
ments, the modeler can use other applicable model verditatnd validation techniques. The intended application
of the modeler determines the acceptable range of resaltsthhe model tests. Preferably, the modeler fixes the ac-
ceptable range before the development and testing of thelranad then works to make the model acceptable. One
part of model accreditation, the certification that the mdslacceptable for a particular application, comes from the
documentation.of modelverification and validation thatri@deler generates from these activities [121].
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1.2. OVERVIEW OF DISSERTATION 3

1.2 Overview of Dissertation

The first part of this dissertation motivates the utility loé tmathematical models that the biological modelers coaistr
by illustrating the mathematics, mechanics, and theomyuhderpin the connection between mathematical models and
biological practice. Chapter 2 introduces the buildingckfrom which biological modelers construct their models.
This dissertation studies biological modelers that orteir models in terms of chemical reactions and chemical
reaction kinetics. Chemical reactions describe the sireadf the biological processes that take place within a cell
Chemical reaction kinetics describe the rate at which tlegribal reactions occur.

The corresponding primitive building block for mathematimodels is the differential equation. A differential
equation defines a family of functions in terms of their reftelmnge over time. The primary motivators of these rates
of change are the chemical reaction kinetic equations fimrbtological models. This dissertation considers several
types of differential equations that biological modelessnmnonly use. However, the remaining material focuses on
ordinary differential equations, which are relatively pimfor a computer to evaluate.

The remainder of Chapter 2 explains the algorithm that lickl modelers use to convert the biological model
to the mathematical model and the justification that theytasaterpret the biological significance from the math-
ematical results. Converting from chemical reactions ftedintial equations is a laborious yet mechanical process
that later chapters in this dissertation address. Thdigation that this algorithm and the differential equatidimat
it produces are meaningful requires that that chemicati@@describe instantaneous physical events, that claémic
reactions take place within an essentially thermodynaliyifixed environment, that Brownian motion evenly mixes
the contents of the discretely-bounded compartments of¢lieand that the chemical reactants and products exist
in sufficiently-large amounts. The first two of these coruiti generally apply to biological systems, while modelers
must verify that the second two conditions apply to the peobthat they are trying to solve. There is no general
method for verifying that these conditions hold for a parée biological system.

The second part of this dissertation describes the devedopai new theory and practice that biological modelers
can use when dealing with these biological and mathematiodkls. Chapter 3 explores the development of models
from a theoretical perspective. Biological modelers todagnmonly employ ad-hoc modeling processes that they
developed through years of practice and experience. Likg/mthoer fields that compose or construct works, biological
modelers use detail-oriented bottom-up modeling proseggmal-oriented top-down modeling processes, or, more
frequently, a combination of the two types of modeling psses. This dissertation examines a particular group of
biological modelers that developed a strongly bottom-ugefiag process and describes their modeling process.

The remainder of Chapter 3 is then the theoretical developofea new modeling process that is later shown to
compare favorably with the original modeling process imzpf reliability, repeatability, efficiency, and correess.
The primary drivers of this new modeling process are weiteld and documented techniques from modeling method-
ologies. Additionally, the new modeling process focusesviig on the domain of the studied biological modelers,
allowing for further refinements that increase power an@-edsise of modeling tools but decrease generality. This
new modeling process is the basis of the practical developaad tools in the remainder of the dissertation.

Chapter 4 applies the new modeling process to develop tbatghe biological modelers can use. The JigCell
modeling environment is a suite of applications, prograngtiibraries, and utility programs that focuses on the pro-
duction, execution, and analysis of models of biochemieattion networks. The JigCell modeling environment
employs the new modeling process to significantly aid biigl@ignodelers and improve the model-development expe-
rience. The JigCell modeling environment consists of thel®uilder, Run Manager, and Comparator applications
that perform major modeling tasks and an experimental tooparameter estimation. The programming libraries
support these applications and further provide the caipald construct new customized applications to meet the
needs of the modelers. The JigCell modeling environmengalmd its component pieces are open source and employ
documented standards for interoperable communicatidnatfter tools and applications.

The final part of this dissertation measures the efficacy@fitgCell modeling environment from both theoretical
and practical perspectives. Chapter 5 develops a systmdatbllection of requirements for biological modeling
tools based on modeling methodology, domain experienckyser interviews. The major portion of Chapter 5 is an
examination of the JigCell applications in relation to #hésol standards. The collection of requirements consfsts o
both functional requirements and performance requiresteeted on the expected trends in model development over
the next several years.
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4 CHAPTER 1. INTRODUCTION

Chapter 6 presents a case study applying the JigCell afiphsato a biological model for cell cycle control in
budding yeast. The same modeling group that developed tgmarmodeling process also developed this budding
yeast model. The budding yeast model is a large, constalgibuilt model with many constraining experimental
observations. Historically, the modeling group has haagdificulty fine-tuning the budding yeast model due to
the number of adjustable control parameters and the expémsedel evaluation. The case study in this dissertation
examines the speedup of model evaluation when an expertleraetaploys automated model evaluation with the
JigCell applications as compared to when the expert modet@toys manual model evaluation.

Chapter 7 contains the conclusions of this dissertatiomnsarizes the contributions that this dissertation makes,
and presents the software engineering and evaluationierpes of the JigCell project.

Connections to other works

Much of the material in this dissertation previously apgean part in publications or online. In most cases, these
publications contain abridged versions of the materiahia tissertation. This dissertation generally superstdes
earlier publications by providing a more thorough treattmanthe material, up-to-date accounts of the software,
methods, results, analyses, and experiences, and congtti the errors found subsequent to publication.

The observational account of the original modeling pro@ssthe ensuing modeling process formalizations of
Chapter 3 appeared in earlier publications. Allen et al.déyinally gave the larger model of Section 3.1 as an
example. Allen et al. [9] and later Allen et al. [10] first debed the original modeling process of Section 3.1, the
modeling methodology of Section 3.2, and the revised madgirocess of Section 3.3.

Several earlier publications described the componenthefligCell modeling environment of Chapter 4. The
introduction to Chapter 4 came from Allen et al. [9] and Alletmal. [10]. Publications that provided portions of the
description of the JigCell Model Builder in Section 4.2 ahd figCell Run Manager in Section 4.3 include Allen et
al. [6], Allen et al. [9], Allen et al. [10], Vass et al. [135nd online by Allen et al. [8]. Publications that provided
portions of the description of the JigCell Comparator inti®ec4.4 include Allen et al. [6], Allen et al. [9], Allen et
al. [10], and online by Allen et al. [5] and Allen [8]. The degation of parameter estimation in Section 4.6 came from
Allen et al. [6], Allen et al. [9], Allen et al. [10], and Pamg et al. [113].

Chapter 5 has never previously appeared in this form, afthqortions appeared in other publications. Allen et
al. [9] and Allen et al. [10] originally included the introdtion to Chapter 5. Allen, Shaffer, and Watson [11] provided
the original form of the support techniques in Section 5.4e Temaining sections of Chapter 5 previously appeared
online by Allen et al. [8] for an earlier version of the Jigh®lodeling environment.

Chapter 6 comes largely from the material in Allen et al. [Pprtions of the introduction to Chapter 6 and the
description of experimental phenotypes in Section 6.2s1 dippeared in Panning et al. [113].
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Chapter 2

Differential Equations for Biological Models

The cell is a highly ordered and intricate machine in whichidewariety of complex chemical processes take place.
Bounded by membranes, cells take in materials and energytfieir environment, use these inputs for maintenance
and growth, and release back into the environment the wasthipts and heat. Put together, the chemical processes
that take place inside the cell form a tightly-coupled regty network that interacts with both the changing environ
ment and the development that occurs within the cell. Atbet@l. [3] provide a general overview of cell biology.

Cells contain many fundamental building blocks, such asaaticles, amino acids, carbohydrates, and lipids. The
cell assembles these fundamental building blocks into amctecular structures, including enzymes, proteins, and
ribosomes, that the DNA and RNA encode using nucleotideesgzps. The regulatory network of chemical processes
coordinates and directs the construction process of mademmlar structures. The term ‘biomolecule’ collectively
describes all of the molecules involved in the chemical psses that take place within the cell.

Biological modelers seek to map and understand chemicaépses through quantitative methods. As biological
modelers map the details of individual biological processeey hope to assemble their discoveries into a roadmap
of integrated biological systems. Researchers expectdhimap to accumulate first into an understanding of simple
cellular systems, and then ultimately into an understamdiriarge and complex eukaryotic organisms. A key tech-
nigue that biological modelers employ is the use of modedind simulation to study the temporal evolution of the
action and effects of regulatory networks on populationsiofolecules.

Enzymes heavily drive the actions of a regulatory networkn ehzyme is a protein that catalyzes a specific
chemical process. Catalysis lowers the activation endratyet chemical process requires to occur and thereby greatly
enhances the rate at which that chemical process takes gliitceugh enzymes increase the rate at which a chemical
process takes place, enzymes cannot enable the occurretie@raodynamically unfavorable chemical processes.
The presence of enzymes does not change the actual value eftilibrium point. Instead, the catalytic properties
of enzymes result in a more rapid redirection of the popaitatif biomolecules to the equilibrium point than in the
equivalent, uncatalyzed chemical process.

Enzyme catalysis is important because the available efiergerforming work is limited at constant temperature
and pressure. The cell is an essentially isothermal emgasistem around the chemical processes that take place
inside. Chemical processes cannot extract useful work freat energy without changing the temperature or pressure
of the enclosing system. The requirement to maintain thelprigrdered structure of the cell disfavors the use of
chemical processes that greatly increase the disordeeafdh Instead, chemical processes must release energy in
the form of heat. Enzymes help facilitate the transfer ofncical energy between chemical processes and thereby
reduce the energy requirements of the cell.

The chemical processes that cellular enzymes catalyzestjypproceed at maximum yield, producing no chemical
byproducts. This is unlike many industrial catalytic preses that require refreshment and maintenance due to the
formation of chemical byproducts. By making use of enzyrhas do not form chemical byproducts during catalysis,
the cell further reduces its energy and material needs.

Biologists classify the chemical processes that occurénctl according to their function. Transport processes
move proteinsymaterialsyand-products from one locatidhercell to another and across cellular membranes. Diffu-
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6 CHAPTER 2. DIFFERENTIAL EQUATIONS FOR BIOLOGICAL MODELS

sion transports many biomolecules throughout the celllanther biomolecules have directed, active transport that
delivers the biomolecules to specific sites within the daliercellular and intracellular signaling processes camim
cate information about the cell and coordinate the respofige cell to environmental stimuli.

Many of the chemical processes that this dissertation usesxmples regulate cellular metabolism and the cell
division cycle. Cellular metabolism and cell cycle regidatconsist of chemical processes that are usually extraor-
dinarily stable and highly conserved, present in nearlpiidal forms across many organisms. The cell responds to
environmental perturbations by employing a controllegoese that restores the cell to its basal state. A mutatain th
disrupts a particular chemical process involved in cefloiatabolism or cell cycle regulation is sometimes survigab
The resulting mutant is capable of surviving under standardlitions. However, the mutant is less competitive in
stressful environments. Biological modelers consideatmatic and cell cycle functional processes important tdystu
because these processes control how cells grow, maintimseilves, and divide. The cell cycle tightly interweaves
with all of the activities that occur within the cell.

This chapter introduces the building blocks from which medeconstruct biological and mathematical models.
Section 2.1 describes chemical reactions and Section 8@ides chemical reaction kinetics. These two components
are together the basis of the biological models that thisedliation describes. The modeling process and modeling
software that later chapters describe treat chemicaliceects indivisible, primitive elements in building models
Then, Section 2.3 describes the corresponding primitemeht for mathematical models, the differential equation.

Section 2.4 ties together the biological and mathematarah$ of a model by illustrating the process of convert-
ing from chemical reactions and kinetics to differentialiations. Later chapters draw heavily upon the algorithms
that Section 2.4 introduces, and this dissertation aftetsvicequently treats biological and mathematical modsls a
equivalents. Finally, Section 2.5 gives the physical cloafribackground that explains why modelers can apply the
algorithms in Section 2.4 to their problems.

Contents

2.1 Chemical Reactions . . . . . . . . . . . . . . e e e 6

2.2 Chemical Reaction Kinetics . . . . . . . . . . . . e e e e 7

2.3 Differential EQuations . . . . . . . ... e e e 10
2.3.1 Systems of Ordinary Differential Equations . . . . . . . ... ... ... ... ...... 11
2.3.2 Other Types of Differential Equations . . . . . . . .. . . ... ... ... ........ 13

2.4 Biochemical Reaction Networks . . . . . . . . . . . . . 15
2.4.1 Modeling a Biochemical Reaction Network with Diffetial Equations . . . . . . .. .. .. 16
2.4.2 Detecting Conservation Relations in a Biochemicad®en Network . . . . . . ... .. .. 17

2.5 Approximations for Differential EquationModels . . . . .. . . ... ... ... ... ... ... 19
2.5.1 Discrete Approximation Schemes . . . . . . . . . . . e e 20
2.5.2 Continuous Approximation Schemes . . . . . . . . . . ... o 21

2.1 Chemical Reactions

Chemical reactions are processes that convert a fixed tioliexf chemical species, the chemical reactants, to anothe
fixed collection of chemical species, the chemical produ€@kemical reactions can involve one chemical reactant
(monomolecular chemical reactions), two chemical redstésimolecular chemical reactions), or a greater number
of chemical reactants (trimolecular chemical reactions,).e Most of the chemical reactions that this dissertation
considers are monomolecular or bimolecular chemical i®a%t In special cases, such as open chemical systems,
there are chemical reactions that have zero chemical rgacta

A chemical reaction equation consists of chemical reastioiowed by an arrow pointing to the chemical prod-
ucts, as iNA,cq + Boxi—>Aoxi + Brea. This particular chemical reaction is an example of an diddareduction
chemical reaction that transfers electrons from one chamsecies to another.

Sometimes, a chemical reaction requires more than onentestaf a chemical reactant or a chemical reaction
produces.more than.one.instance,of a chemical product. dieh&tmetry is the number of instances of a chemical
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2.2. CHEMICAL REACTION KINETICS 7

reactant or product that a single chemical reaction evexativies. Writing a number before the chemical reactant
or product declares the stoichiometry of that chemical iggein the chemical reaction. When no number appears
with a chemical species, the stoichiometry of that chenspakies in the chemical reaction is one. For example, the
oxidation-reduction chemical reaction equation,

2Fe3t 4 Sn?t——2Fe?t + SnT,

corresponds to the chemical reaction equation with twoempf the chemical specid&>* and two copies of the
chemical specieBe?™,
Fe3t + Fe?t 4 Sn?t——Fe?t 4 Fe?t + Sn™.

The chemical reactions given so far are irreversible chaiméaction equations. An irreversible chemical reaction
equation only proceeds from the chemical reactants to temidal products. A reversible chemical reaction equation
can proceed in either direction. Switch the labels ‘reatimd ‘product’ when the chemical reaction proceeds in
reverse. Reversible chemical reaction equations have-avayoarrow, as itNO,<—==N-0y4, which is equivalent to
the pair of irreversible chemical reaction equations,

2NOy——>N5 Oy and NoO4—>2NOs.

Many of the chemical reactions that take place within thearel reversible chemical reactions. However, the pair
of chemical reactions generally has an equilibrium poiat thvors one of the chemical reactions over the other at any
particular moment.

Chemical reactions take place within an enclosed univi&rsmyn as the chemical system. Modelers frequently do
not represent every chemical species that is present ittegdeell when describing the chemical system. Simplifying
models by omitting chemical species makes feasible thelatioo of interesting biological problems. A model
commonly omits readily available chemical species. Thenibal system contains these chemical species in ample
amounts, and an instance of the species is always availdide & chemical reaction needs one. For example, a
modeler can write the phosphorylation and dephosphooylatf the chemical species using the chemical reaction
equationA—==AF without regard to the availability of the phosphate grounz this chemical reaction transfers.

The chemical reaction equations that modelers write soneetindicate that a chemical species spontaneously
appears or disappears because of the chemical reactiomi€iieeactions and systems in which a chemical species
spontaneously appears or disappears are ‘open’. Similelymical reactions and systems in which none of the
chemical species spontaneously appear or disappearasedt! Open chemical systems exchange energy and matter
between the system and its containing environment. Thindigin between open and closed chemical systems plays
an important role in the existence of moiety conservatidatiens, which Section 2.4.2 describes in detail.

Chemical reactions in which no chemical reactants take grartsynthesis’ reactions and written with a dot for
the reactantss ——X. Chemical reactions in which no chemical products take gatdegradation’ reactions and
written with a dot for the product&{—— e . It does not make sense to talk about a chemical reactionneither
chemical reactants nor products. Synthesis and degradatictions arise when the chemical system omits chemical
species and when chemical reactions transport chemiceiespiato and out of the enclosing universe. A chemical
system that includes synthesis or degradation reactiarséxample of an open chemical system.

2.2 Chemical Reaction Kinetics

In addition to the structure of a chemical reaction, the dleahreaction equation, simulation requires knowing the
rate at which the chemical reaction events take place,cctile chemical reaction velocity. The kinetic formula of a
chemical reaction is a formula that has chemical speciesartrations as the variables and parameters called kinetic
rate constants. Evaluating the kinetic formula of a chehne&zction using the chemical species population known for
the chemical system gives the chemical reaction velocitytfat chemical reaction.

The order of a kinetic formula is the number of chemical specioncentrations that the formula contains. Math-
ematicians.often.write.an-orderwith respect to a particsédyr In this case, the set typically is the chemical reastant
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8 CHAPTER 2. DIFFERENTIAL EQUATIONS FOR BIOLOGICAL MODELS

for the chemical reaction. Thus, the chemical reaction ggual—— B with the kinetic formulgA], where[A] is
the concentration of the chemical specigss a first-order kinetic formula with respect to the cherhieactants. The
chemical reaction equatiot—— B with the kinetic formuldC] is a zeroth-order kinetic formula with respect to the
chemical reactants. When this dissertation gives the afdaikinetic formula, the order is with respect to the set of
chemical reactants for the chemical reaction unless statedtwise.

The most fundamental type of kinetic formula is a mass adtioetic formula. Mass action kinetic formulas result
from the physical observation that the propensity of chahspecies to interact is proportional to the product of the
concentrations of those chemical species. The chemicetioaavelocity,v, of the general chemical reaction equation

Tlsl +7’282+...+7’nsn«>

with mass action kinetics is a kinetic rate constanmultiplied by the concentrations of the chemical reactants

v==k ﬁ[si]T'i7

where the thermodynamics of the chemical reaction dicteekinetic rate constait Mass action kinetic formulas
have an order equal to the number of chemical reactants treraical reaction event requires to occul,_, ;.

When writing a chemical reaction equation that uses magsednetics, it is typical to write the kinetic rate con-
stant atop the arrow between the chemical reactants andgsod hus, the chemical reaction equation- B——>C
with mass action kinetics and a kinetic rate constgnis written as

k¢
A+B——C.
Similarly, the reversible chemical reaction equatior- B<=C with mass action kinetics, a kinetic rate constant

in the forward direction, and a kinetic rate constanin the reverse direction is written as

ky

A+B C.

ky
The forward kinetic formula of this chemical reaction eqoris s [A][B], and the backward kinetic formula of this
chemical reaction equation s [C].
Michaelis-Menten kinetics

The two-step process that describes simple enzyme catalfy/the chemical reactafStinto the chemical produd®
via the enzyméd is:

1. The chemical specigsmeets with the enzyme to form the complexS,
2. and the complekS proceeds to form the chemical produirt

The formation of the chemical product liberates the enz¥irfer future chemical reactions. Of course, these two
chemical reactions can also proceed in reverse. The chespieasies® meets with the enzymig, forming a complex.
Finally, that complex then dissociates back to its indialdcomponents, the chemical specteand the enzymé.
These two reversible chemical reactions join to give therdbal reaction equation

ey ks
E+S - ES ~E + P. (2.1)
ko1 ke s

The Michaelis-Menten kinetic formula [37, 96] approximathe simple scheme for enzyme catalysis that uses
the.system.of four.chemicalreactions of Equation 2.1 andgivsingle formula for the chemical reaction equation
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2.2. CHEMICAL REACTION KINETICS 9

E +S——E + P. The standard derivation of Michaelis-Menten kineticsokes two assumptions to create the ap-
proximation. Other approximate schemes for enzyme casaysvide results similar to Michaelis-Menten kinetics
but use different underlying assumptions. The biologicatlais that this dissertation examines are generally iaméri
to the particular approximation scheme that the modeleosb®to use.

e The first assumption is that none of the chemical speiesforms into the complex. This assumption, equiv-
alent to setting the kinetic rate constént, to zero, is essentially true when the concentration of tlergbal
species is small.

e The second assumption, called the steady state assumigtitvat the concentration of the complES does
not change even though the concentrations of the chemieaiegh andP are changing. The steady state
assumption requires that the rate of formation of the compleequal the catalytic rate of the overall chemical
reaction plus the rate at which the compl&& reverts to its individual components, the chemical spegiasd
the enzymée.

Applying these two assumptions to Equation 2.1, the reast@ocity of the chemical reaction equation

ko
ES——>E+P

limits the overall catalytic rate. Thus, the catalytic rate- k2 [ES]. Also, by the steady state assumptibn[E][S] =
(k—1 + k2)[ES]. Solving this equation for the concentration of the com@&xgives

[E][S]

e

(2.2)
Biologists call the constant expressi@n 1 + k2)/k; in Equation 2.2 the Michaelis constant and use the syrhhol
The enzyme converts between the free fdtrand the complekS. The total amount of the enzyme present in the
chemical system does not change over time, and the[BUm [ES] = E7 holds true for some constant total amount
Er. Substituting this conservation relation into Equatiok@nd solving for the concentratigBS| produces
Er[S]  [ES][S] Er[S] Er[S]

S = o ™ o (S Rt ST @3)

Therefore, substituting Equation 2.3 into the originabbtgtc rate equation gives the kinetic formula,

 kyEr[8)
v = m

However, the produdt, E7 is simply the catalytic rate when all of the enzyme is in thefof the compleXS. Since
the rate-limiting step in this system of chemical reactisrtbe production of chemical products from the comdi&x
the productk, E7 is also the maximum rate at which the chemical reaction clee péace, called,.. Thus, it is
customary to instead write a Michaelis-Menten kinetic fatanas

Umax [S]

" kn+ B @9

v

using the parameters,,, andk,,. When the concentration of the chemical reactanis much greater than the
concentration of the enzynig the Michaelis-Menten formula gives the limiting catatytatev,,, ..., which is zeroth-
order in terms of the reactants.

The models in this dissertation use Michaelis-Menten kirffetmulas to reduce the number of intermediate chem-
ical products written. Reducing the number of intermedidemical species makes the models simpler and easier to
understand.-However;,some.model simulation schemes, suttiose that Section 2.5.1 describes, require that the
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10 CHAPTER 2. DIFFERENTIAL EQUATIONS FOR BIOLOGICAL MODELS

modeler ‘unpack’ complex kinetic formulas, such as Micls®enten kinetic formulas, into chemical reaction equa-
tions with elementary mass action kinetic formulas.

Hill equation

Although the Michaelis-Menten approximation for enzymeabgsis is a useful simplification, some enzymes do not
have Michaelis-Menten kinetics. The solution curve for kiveetic formula of Equation 2.4 has a hyperbolic shape.
The slope of the catalytic rate curve is initially steep asdbncentration of the chemical proditis small. As time
progresses, the action of the enzyme moves the system toegquilibrium and the catalytic rate curve levels off.

Allosteric enzymes are enzymes that have multiple binditgg $hat interact as the enzyme encounters chemical
species. When the binding sites of an allosteric enzyme @opearative, the binding of a chemical species to the
enzyme at one of the binding sites improves the chances ofmichl species successfully binding to the enzyme
at another binding site. Enzymes that exhibit this coopardtehavior have a catalytic rate curve with a sigmoidal
shape. Initially, the slope of the catalytic rate curve ianheflat. As time progresses, chemical species occupy a few
of the binding sites, and the catalytic rate curve growspsteeFinally, the action of the enzyme moves the system
near equilibrium, and the catalytic rate curve levels offiag

Modelers commonly use the Hill equation,

v — Umax[s]h
Kb+ [S)M

to empirically match sigmoidally-shaped catalytic rateves. In the Hill equation, the parametiercontrols the
shape of the sigmoidal curve, with= 1 reducing to a Michaelis-Menten kinetic formula. Note tHat,j, = [S] in
Equation 2.4, the chemical reaction velocitys equal t00.5v,,,,. Due to this physical interpretation, the parameter
k. is written askg 5 when it appears in non-Michaelis-Menten kinetic formulas.

This brief introduction to chemical reaction kinetics cma the types of kinetic equations that appear in the
examples in this dissertation and in many of the models treateferences describe. Modelers have named and used
in models a vastly greater number of chemical reaction ldrexfuations. Hammes [64] gives a general overview of
the kinetic formulas that many typical enzymatic processss Hofmeyr and Cornish-Bowden [68] go into more
detail about the Michaelis-Menten and Hill equations, irtipalar giving derivations for a general reversible forfn o
each. A modeler can use any equation as a kinetic formulanbay modelers primarily use kinetic formulas that
derive from known physical and biological phenomena.

2.3 Differential Equations

Modelers often want to know how a chemical species,Ssaghanges over time. The formula for the concentration of
chemical specied as a function of time is labelgd\](¢), or as the variabl@A]. The chemical reactions that involve
the chemical specieA dictate the formula fofA](¢). As Section 2.4 shows, each chemical reaction that uses the
chemical speciea as a reactant contributes a negative term to the diffeledization for[A](¢) and each chemical
reaction that forms\ as a product contributes a positive term.

Often, it is not possible to write an explicit equation faf(¢). Instead, the modeler writes an equation that contains
derivatives of A|(¢) and other chemical species concentrations, creatingexeiffial equation. If the chemical species
A is synthesized at a constant ratethen the concentratidra\| is given by the differential equation

d[A]
= k. 25
o (2.5)
Dependent variables are those variables whose derivatote®in the differential equation. Independent variables
are those variables for which derivatives are taken in rdsgfan the differential equation. A parameter is a constant
that varies in other equations of the same general form. Uafon 2.5]/A] is a dependent variableis an independent
variable-andk-is-a-parameter-A, differential equation can contain an utdidhnumber of dependent variables,
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2.3. DIFFERENTIAL EQUATIONS 11

independent variables, and parameters. Most of the diffiédeequations in this dissertation have a single indepahd
variable but many dependent variables and parameters.

There are several important classifiers for differentialaopns. An ordinary differential equation is a differeti
equation that takes only ordinary derivatives of the depahdariables. Although this dissertation uses ordinary
differential equations extensively, this is only a smattdaduction to the theory of ordinary differential equaton
For a more thorough coverage, consult references such adddand Cooke [13], Boyce and DiPrima [36], and
Rainville [114].

The order of a differential equation is the highest order efiéhtive that occurs in the equation. A system of
differential equations with order greater than one has eesponding system of differential equations with order.one
To produce such a system, introduce new variables for tHeehigrder derivatives until every derivative is expressibl
as the first derivative of some existing variable.

Finally, a differential equation is linear if every term bftdifferential equation is linear in the dependent vagabl
and the derivatives of the dependent variables. A lineat;déirder ordinary differential equation has the genenahfo

ao(t)y’ + a1 (t)y + az(t) = 0,

wherey is a variable and/’ is the first derivative of; with respect ta&&. Most of the differential equations that this
dissertation discusses are first-order ordinary difféateguations. However, only the simplest of the differahti
equations, such as Equation 2.5, are linear. Non-linearsérequently arise in the differential equations generate
from biological models due to the use of mass action kinatienfilas with chemical reactions that have multiple
chemical reactants and due to the use of more complicatedikiformulas, such as the Michaelis-Menten or Hill
kinetic formulas, which lead to differential equationsttbantain products of dependent variables.

2.3.1 Systems of Ordinary Differential Equations

When a chemical reaction involves two or more chemical ggetihe chemical reaction equation gives rise to a system
of differential equations. The differential equationstie system have different parameters and dependent vajable
but share a single independent variabldhe chemical reaction equatidn+ 2B——3C with mass action kinetics
and a rate constant éfgenerates the system of simultaneous ordinary differesqiaations

d[A]

— = —HAIBP, (2.6)
% = —2Kk[A][B]?, (2.7)
d(C] _ 2

o = 3K[A]B]”. (2.8)

Section 2.4 describes how to construct a system of diffexegquations from multiple chemical reaction equations.
The general form of a system of first-order ordinary difféi@requations is

/

Y1 = fl(taylayQa' . ayn)v
yé = fQ(taylayQa B ayn)v

y;, = fn(taylvy27 s ayn)v

wherey, v, ..., y, are variables corresponding to the functign&), y2(t), ...,y (t), andy; is the derivative of;
with respect ta. Vector notation encodes this system of differential eiguatmore compactly as
y' = £t y). (2.9)

Asolutionto.Equation2:9.is.am-dimensional vector function(t), such that each componentyft) is differentiable
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12 CHAPTER 2. DIFFERENTIAL EQUATIONS FOR BIOLOGICAL MODELS

with respect tat andy = y(t) satisfies the system of differential equations. Both of ¢hesnditions must hold
along the intervalto, t.max] that the modeler considers interesting. The tigé&s the moment when numerical initial
conditionsy (to) = yo, are known for the system of differential equations. Theetip. is the last moment that the
modeler wants to examine. An initial value problem combimegstem of differential equations along with numerical
initial conditions. Unfortunately, a modeler usually cahionstruct a solution vector functign(t) that solves a
biologically interesting initial value problem.

Solving a System of Ordinary Differential Equations

Finding a solution for a system of differential equationserated from chemical reaction equations is often quite
difficult. Chemical reaction equations frequently trateslmto non-linear differential equations, few of which bav
analytical solutions. Instead of hoping to find an analytscdution to the system of differential equations, modgler
instead numerically approximate a solution to the systediftdrential equations.

Using the numerical solution for the system of differenéiquations, the modeler constructs a time series plot of
the chemical species populations as a function of time. rSuleethod is a simple numerical technique for solving
differential equations by extending the solution vectaraading to a local approximation @ft, y).

1. Start at the known pointg at the timetg,

2. construct a tangent line to the graphy (¢)) with slopef(¢,y),

3. follow the tangent line to the approximate pgyntat the timet;, wheret; > ¢,
4. and repeat this process to produce successive approomsgs, ys, - - ., Y-

The overall approximation for the solution vector functigft) is then
Yr+1 = Yr + f(tr7yr)(tr+l - tr)7 (tO < tl <0< tr < tr+1 <L e S tmax)- (210)

The global error of Euler's method is proportional to theesit the differences.; — ¢, [36]. Euler’'s method gen-
erates accurate solutions for simple systems of diffesbatjuations, such as Equations 2.6-2.8. However, applying
Euler's method to large biological systems frequently setadinaccurate results.

Solving a Stiff System of Ordinary Differential Equations

A system of differential equations that a modeler genefat@s many chemical reaction equations is typically stiff. A
stiff system of differential equations is one that is séwsito small perturbations in the solution value. In manyesaa
stiff system of differential equations comes from a biot@gisystem where conditions change on two vastly-different
time scales. Euler's method is relatively accurate for apnsystem of differential equations. However, Euler’'s
method is unstable for a stiff system of differential eqolasi even when the sizes of the time steps are relatively small
Producing an accurate solution to a stiff system of diffée¢equations using Euler's method is expensive.

The backward Euler's method is a variation of Euler's metthad uses backward difference formulas to construct
an implicit approximation for the solution vector functigiit). Unlike Euler’s method, the backward Euler’s method
is stable regardless of the size of the time steps. The badkder's method replaces the tangent line approximation
used in Euler's method with the backward difference formula

Y () ~ 2 (2.12)
r+1 — Ur

Substituting Equation 2.11 to produce an equivalent to Egu.10 gives the backward Euler formula,

Yr+1 = Yr + f(tr+layr+l)(tr+l - tr)- (212)

Sincey-+is-definedimplicitly;computing the value gf.., requires solving Equation 2.12.
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Euler's method and the backward Euler’s method are firseamethods for numerically solving differential equa-
tions. Higher-order numerical methods exist that can pcednore efficiently an accurate approximation to a system
of differential equations. Shampine and Gordon [127], abl aseAscher and Petzold [15], describe the theory and
application of higher-order methods for solving stiff ®ys of ordinary differential equations.

2.3.2 Other Types of Differential Equations

This dissertation uses several other types of differeptiglations that also regularly appear in biological modglin
This section gives a brief overview of differential-algatorequations, delay differential equations, partialetihtial
equations, and stochastic differential equations.

Differential-algebraic equations

Section 2.3.1 considered systems of differential equatibat have the form given by Equation 2.9. In many biolog-
ical problems, algebraic equations augment the systemffefelitial equations to produce a system of differential-
algebraic equations. The general form of a system of ordifirat-order differential-algebraic equations is

y =f(t,y,2),

0 =g(t,y,2),

where thez variables correspond to the functiong&) whose time derivatives do not appear. Theariables are
the ‘differential variables’ and the variables are the ‘algebraic variables’. Algebraic vaealdo not need initial
conditions. Given initial conditionsy, for the differential variables at tim&, the solution forz of g(to,yo,z) = 0
provides the initial conditionsz,, for the algebraic variables. Not specifying initial cotimis for the algebraic
variables ensures that the joint initial conditidiys; zo) are consistent for the initial value problem of the system of
differential-algebraic equations. However, the algamtto solve forz, commonly an iterative version of Newton’s
method, may need an initial guess #qr.

When the equatiog(t,y,z) = 0 is solvable forz given values ofy andt, the system of differential-algebraic
equations is not much harder to solve than a system of onddifierential equations. Systems of differential-alggbr
equations for which this condition is not true are ‘high iRdéligh index systems of differential-algebraic equason
are considerably more difficult to solve [57, 91]. This ditaton uses differential-algebraic equations in several
places, primarily for conservation relations, which Saet2.4.2 discusses.

Partial differential equations

The systems of ordinary differential equations examinethsdescribe chemical systems that are spatially homoge-
neous. Spatially heterogeneous chemical systems reqiegiens that include the spatial position in the function f
the differential variables in the chemical system. Padifierential equations, equations that take a partiaaitie

of one or more of the differential variables, are a commosklumethod for describing spatially heterogeneous chem-
ical systems. Chemical processes that incorporate bothichkreactions and chemical species diffusion frequently
use partial differential equations that combine the chahm&action kinetics with diffusion terms,

% = f(t,y) + diffusion terms
where a parameterized function, suchk3&y, describes the diffusion process.

A famous example of a spatially heterogeneous system tleatpestial differential equations is the Fourier heat
equation [88]. Starting from physical first principles, Fiea showed that the temperature of a solid bdd¢, p), at
the pointp in 3-space and timg is given by a partial differential equation,

oT

- == 2
o = FV°T
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14 CHAPTER 2. DIFFERENTIAL EQUATIONS FOR BIOLOGICAL MODELS

which is the heat equation. The paraméiés a value that depends upon the conductivity of heat in thid body.

Solving a system of partial differential equations is tygtig numerically intensive. The computer must sample the
differential variables that represent the chemical sysiemany different spatial locations [98]. Modelers fredilyen
use partial differential equations with chemical systeprswhich the well-stirred assumption does not hold. Sec-
tion 2.5.1 describes the well-stirred assumption in detaiportant partial differential equations that this disaton
discusses include the stochastic chemical master equ&tpration 2.19), a fundamental equation that describes the
population of chemical species as a function of time. Modelsually approximate the stochastic chemical master
equation rather than trying to solve the equation directly.

Delay differential equations

A delay differential equation is a differential equatioratlis a function of the solution to the differential equation
beyond some differential time stefp. A frequent source of delay differential equations in bgital modeling is
transport processes. Transport processes model the moteholemical species from one location to another in the
cell. The general form of a system of ordinary first-ordeagalifferential equations is

y/:f(t;Tla"'aTM7y)a t2t07
y(t;T):‘I’(t)v tO_TmStSth
wherery, ..., 7, is alist of backward time differences into the solution af fystem of differential equations with<

< T < - < Ty,andW is a real-valued function ofty — 7., to] that supplies a solution for the system of
differential equations before the initial conditions givat timet,. Frequently, it is convenient to defink so that
W(t) = yo for all timesty — 7., < ¢ < tp. In this case, the system of differential equations is in iesgent phase
before the time intervdty, t..x] that the modeler is interested in studying.

Ordinary delay differential equations describe many sengffusion and signaling processes. Delay differential
equations combine with differential-algebraic equationpartial differential equations in the way that one would
expect. Systems of delay differential equations are pddity difficult to solve [28, 49]. Like partial differentia
equations, a common use of delay differential equationfiésnical systems for which the well-stirred assumption
does not hold.

Stochastic differential equations

In 1908, Paul Langevin [83] presented a differential foranfdr the position of a particle influenced by Brownian
motion that duplicated a result of Albert Einstein. The Lavig formula combines a deterministic ordinary differahti
equation with a noisy differential term to produce a stotihakfferential equation

d
o =£(ty) +hity)G(), (2.13)
whereh(t, y) is the intensity of the noise and tligt) are independent Gaussian variables.

A complication in the solution of stochastic differentiguations is that the derivative does not exist due to the
presence of the noise term. Instead, Equation 2.13 is tewiiit differential form as

dy =f(t,y)dt + h(t,y) dW(¢),

whereW (t) is a Wiener process [76], and interpreted as the integraltému

t

y(t) = yo + f(t,y)dt+/ h(t,y)dW(t).

to tO

Although the first integral is an ordinary Riemann integttaé meaning of the second integral is less clear. The second
integral cannot be a Riemann-Stieltjes integral becauseséimple paths of a Wiener process are not of bounded
variation=lnstead;the.second.integral is a stochastg)ial.
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2.4. BIOCHEMICAL REACTION NETWORKS 15

A further complication in the solution of stochastic diff@tial equations is that there are many qualitatively
different, rational interpretations for what the stociasitegral means. The Itd stochastic calculus [73] and the
Stratonovich stochastic calculus [79] define two of the fidesnterpretations for a stochastic integral. Stocltasti
differential equations appear in the chemical Langevinagign (Equation 2.20), which is an intermediate stop in
the derivation from the stochastic chemical master eqnatialescribing chemical systems with ordinary differdntia
equations. However, this dissertation does not examingisob to the chemical Langevin equation and does not
consider the nuances that separate the It and Stratdnsieichastic calculuses.

2.4 Biochemical Reaction Networks

Models of interesting biological processes consist of nanypled chemical reactions, along with the corresponding
chemical reaction kinetics. A biochemical reaction netwisran aggregate of multiple chemical reactions. Bio-
chemical reaction networks are graphs that capture theichéproducts and reactants at the vertices and represent
chemical reactions that create, destroy, and convert tresmical species using labeled directed edges. The traatme
of biochemical reaction networks in this dissertation mikdr to Aris [12] and Feinberg [53].

There are many ways to communicate the structure of a bioiclaéneaction network. A simple way of repre-
senting biochemical reaction networks is to list the chexmieactions and reaction kinetics that the network costain
Table 2.1 describes a biochemical reaction network thatagos four chemical specied,, B, C, andD, and five
chemical reactions. For simplicity, all of the chemicalatan kinetics in this example are mass action kinetics.eNot
that the third kinetic formula i&[C]? instead of2k[C].

Table 2.1: Chemical reaction equations using mass-actiwtiks for a simple set of chemical reactions.
Chemical reaction equation  Kinetic formula

kq
A——8B kq[A], ks[B]

Ky

ke
*«— > ke
2C——3D k[C]2

kq
D——e kq4[D]

The biochemical reaction network in this example is slighthusual because it consists of several short and
unlinked collections of chemical reactions. A more typitait far larger, biochemical reaction network tends to have
long series of chemical reactions joined sequentially.fiibal reactions linked by a common intermediate chemical
can transfer chemical energy from one chemical reactiomé¢onext. In the isothermal environment of the cell,
chemical reactions without a common intermediate chenai@ahot transfer chemical energy, and any excess energy
that the chemical reaction produces dissipates as heat.

A wiring diagram is a graphical depiction of a biochemicaaton network. A wiring diagram has labeled nodes
that represent the chemical species and arcs that repthgectiemical reactions. Typically, modelers do not draw
the chemical reaction kinetics directly on the wiring diagrbut instead provide them separately. Figure 2.1 is a
wiring diagram that corresponds to the biochemical readatigtwork given in Table 2.1. It is easy to see the structure
of the biochemical reaction network when looking at the mgrdiagram. However, because the chemical reaction
kinetics are not present in the wiring diagram, a modeldr retieds the table of chemical reaction equations and
kinetic formulas to get this vital information about the themical reaction network. Finally, a system of differahti
equations can mathematically represent the biochemiaatiom network. The remainder of this section covers the
creation.of-a-system.of-ordinary-differential-algebraioatipns that correspond to a biochemical reaction network.
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16 CHAPTER 2. DIFFERENTIAL EQUATIONS FOR BIOLOGICAL MODELS

Figure 2.1: Wiring diagram for the simple set of chemicakte&ms in Table 2.1.
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2.4.1 Modeling a Biochemical Reaction Network with Differatial Equations

The stoichiometry matrix of a biochemical reaction netwizrla real-valued, rectangular matrix that describes the
topology of the network and the transfer of mass that re$udta chemical reaction events. The stoichiometries of
chemical species in the reactions that make up the bioclanei@ction network provide the entries of a stoichiometry
matrix. The stoichiometry matrix does not include chemieslction velocities. The stoichiometry matrix for a
biochemical reaction network does not change during sitiaunla

A biochemical reaction network witlm chemical species andchemical reactions has an by n stoichiometry
matrix. The columns of the stoichiometry matrix corresptmdhemical reactions; the rows of the stoichiometry ma-
trix correspond to chemical species. The number at thesietdion of a row and column in the stoichiometry matrix,
a ‘stoichiometric coefficient’, gives the effect on the ptaiion of chemical species from a single occurrence of that
chemical reaction event. Positive stoichiometric coedfits correspond to the chemical products of a chemical reac-
tion. Negative stoichiometric coefficients correspondi® ¢themical reactants of a chemical reaction. The magnitude
of the stoichiometric coefficients indicates the quantitgubstance that each chemical reaction event convertsnWhe
a chemical reaction does not involve a particular chemjpat®s, that stoichiometric coefficient is zero.

This dissertation labels a stoichiometry matrix with a sic§ and labels stoichiometric coefficients; where
0<i<mandl<j<n.

S11 512 T Sin

521 522 T S2n
S =

Sml Sm2 ' Smn

Building a system of ordinary differential equations from the stoichiometry matrix

Once the modeler computes the stoichiometry matrix of aH@otcal reaction network, the process of converting
that biochemical reaction network into a system of ordingifferential equations is straightforward. A stoichio-
metric coefficients;; gives the quantity of the chemical species with indethat an occurrence of the chemical
reaction event with index requires. Each chemical reaction has a chemical reactiloeitye v; for the jth chem-
ical reaction, that describes how frequently chemicalieacvents occur. The chemical reaction velocity vector
v = [11(C) v2(C) ... wv,(C)]T collectively gives the chemical reaction velocities. Thetor of chemical
species population® = [[C;] [Ca] ... [Cw]]* describes the current state of the chemical system.

The product of a stoichiometric coefficient with a chemiealation velocity is the rate of change of that chemical
species concentration that that chemical reaction induées the chemical specidgs;, the rate of change of the
concentratiofCsl.that.the.chemical reaction with indgxnduces iss; jv;. Summing up the influxes and effluxes of a
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2.4. BIOCHEMICAL REACTION NETWORKS 17

chemical species across all of the chemical reactions gifesmula for the total rate of change of the concentration
of that chemical species induced by the biochemical reaatiEtwork. The chemical reactions that make up the
biochemical reaction network induce a net change in the latipa of chemical species according to the equation

S11 S12 cc Sin v1(C) s1505(C)
dC So1 S22t Sam v2(C) | s2;0;(C)
4C _ svi0) — _ 2.14
o =~ Sv(©) : SR : ; : (2.14)
Sml Sm2 °° Smn UH(C) S"jvj(c)

As an example, the simple biochemical reaction network Tabte 2.1 describes has four chemical species and
five chemical reactions. Although the system has only folttewr chemical reaction equations, there are actually
five chemical reactions because one of the chemical reaetjoations is reversible. The stoichiometry matrix of this
biochemical reaction network is

-1 1 0 0 O
1 -1 0 0 O

S = 0 0 1 -2 o0 |° (2.15)
0 0o 0 3 -1

and the chemical reaction velocity vectonvis= [k.[A] k[B] k. k[C]? kd[DHT. Expanding the produc&v
according to Equation 2.14 leads to the system of ordindfgréntial equations for the chemical reactions of the
simple biochemical reaction network

= ky[B] — ko [A], (2.16)
dB] _

e kqo[A] — ks[B], (2.17)
d[C]

5 = ke 2k[C)?,

d[D] _ 2

w7k 3K[C]” — kq[D]

2.4.2 Detecting Conservation Relations in a Biochemical Retion Network

An interesting observation of the system of differentialatipns that corresponds to the biochemical reaction nm&two
in Table 2.1 is that Equations 2.16 and 2.17 sum to zero. lmmp#t the chemical reaction equations, it is obvious
why this should occur: chemical speci&sxonverts solely to chemical speciBswith a stoichiometry of one, and in
reverse, chemical speciBsconverts solely to chemical speci&swith a stoichiometry of one. Conservation of mass
states that the sum of the quantity of chemical spegiaad the quantity of chemical speci@snust remain constant.
This means that the sum of the quantities of chemical speciasd chemical specid3 is [A] + [B] = T for some

constantl’. Therefore,
d d d

dt [A]+ dt [B] = dt
The rate of change of the quantity of chemical speciesiust always exactly cancel out the rate of change of the
quantity of chemical specieB, henced[A]/dt = —d[B]/dt as seen earlier.

A conserved moiety is a collection of chemical species tloatvert from one form to another but whose total
amount never changes. The sum of the quantities of the chéspecies that make up a conserved moiety is a
constant. Chemical specidsandB form a conserved moiety in the biochemical reaction netvimiable 2.1. There
are reactions in the model that convert between these twamichéspecies, but there are no chemical reactions that
either create or destroy chemical speckesr B. A chemical species that phosphorylates and dephosphesylaut
never synthesizes nor degrades, is a common biological@easha conserved moiety. Two chemical species, say
speciess.andSty that.differ.only.due to a phosphorylation state form a covse moiety wheréS] + [SP] = Sr.

T =0.
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The sum[A] + [B] = T is called a conservation relation. Note tfiBf = 7" — [A] can replace Equation 2.17
to produce a system of ordinary first-order differentigjeddraic equations that has the same solution as the original
system of differential equations. Replacing differentigliations with conservation relations is often advantagéar
the analysis and simulation of a biochemical reaction ngtwalthough conserved moieties are not the sole source
of conservation relations [124], many of the conservat@ations in this dissertation derive from conserved mesgti
and this dissertation frequently uses the term ‘consemwaélation’ in the sense of a moiety conservation relation.

Analysis of the stoichiometry matrix

Examining the stoichiometry matrix in Equation 2.15 regeamhother interesting observation. The rows of the stoi-
chiometry matrix for chemical speciésandB are linearly dependent. In fact, rows of the stoichiometatnr are
linearly dependent if and only if they represent a cons@matlation [69]. Therefore, the conservation relationis f

a biochemical reaction network are computable from theektometry matrix. The system of differential-algebraic
equations for the biochemical reaction network when evessible differential equation is replaced with a conserva-
tion relation hasank(S) differential equations anth — rank(S) conservation relations.

Several methods exist for computing the conservationiosigtof a biochemical reaction network. A simple and
generally efficient method for computing conservationtrefes is to apply Gauss-Jordan elimination to row-reduee th
stoichiometry matrix. Gauss-Jordan elimination separaite the linearly dependent rows of the stoichiometry matri
replacing those rows with zeros. Examining the elementatyines that the elimination process used determines a set
of conservation relations. Note that the set of consermattations that an elimination process produces is notuiq
Applying different elementary row operations can lead féedént, but equally valid, conservation relationships.

An example applying Gauss-Jordan elimination to the storoktry matrix given by Equation 2.15 follows.

1. Augment the stoichiometry matrix given by Equation 2.ithwhe identity matrix/,,,. Mentally label the rows
of the augmented matrix with the chemical species that eashepresents, in this cage B, C, andD.

-1 1 0 0 0|1 0O O0] A
1 -1 0 0 0|01 00| B
0 0 1 -2 01]0 0 10| C
0o 0 0 3 —-1]0 00 1] D
2. Perform Gauss-Jordan elimination to produce the redonegdx
1 -1 0 0 0 -1 0 0 O A
0 01 -2 0 0 01 o0 C
o 0o 01 -1/3;0 00 1/3| D (2.18)
0 0 0 O 0 1 1.0 0 B

3. The left-hand side of the reduced matrix has a single r@w ¢bntains only zero entries, indicating that the
system contains one conservation relation. Multiply theesponding row in the right-hand side of the reduced
matrix by the vector of chemical species populations to forenexpression for that conservation relation,

11 0 0 = [A] + [B].

Sgax>
|

[
[
[
[

Thus, the model expresses the conservation reldfign- [B] = T'. Note that after performing Gauss-Jordan
elimination, the conservation relation row in Equation&id the one with the label ‘B’. Therefore, the conservation
relation replaces the differential equation for the chetrgpecie®3. Cornish-Bowden and Hofmeyr [44] give another
example.of-using-Gauss-Jordan.elimination to compute thearwation relations for a simple biochemical reaction
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network. Sauro and Ingalls [124] give an overview of sevemathods for calculating conservation relations along
with consideration of related computational issues.

2.5 Approximations for Differential Equation Models

The process that Section 2.4 describes for creating a systerdinary first-order differential equations requires
several physical assumptions. The physical assumptiodg imasupport of using a system of ordinary differential
equations to describe a biochemical reaction network deehssumptions about

¢ the thermodynamic environment in which the chemical reastiake place,

¢ the structure of the biochemical reaction network,

¢ the relative proportion of reactive and non-reactive maliaiccollisions,

e and the distribution of chemical species within the volurfithe chemical system.

Making physical assumptions to construct an approximatfdhe real biochemical reaction network is a reasonable
approach. The goal of modeling is to gain insight by simatathe biochemical reaction network, rather than emu-
lating the biochemical reaction network. Physical assimngtreduce the time that simulation requires and thereby
make tractable the study of large-scale biochemical r@actetworks.

Two significant physical assumptions pervade all of thetgmiumethods that this dissertation discusses. The first
physical assumption deals with the environment of the déle second physical assumption deals with the chemical
reactions that occur within the cell.

The environmental assumption

The first assumption is that chemical reactions take plagidérof a fixed volume with uniform and constant tempera-
ture and pressure. Thermodynamical statistics, such dsittgerature of the surrounding environment, influence the
chemical reaction velocities. On a microscopic scale, jgayforces and the constraints specified by thermodynamics
control the chemical reactions. Simulations at the megmsenolecular protein level subsume the effects of physical
forces into the rate constants. The modeler encodes thet #ff# physics and thermodynamics have on a chemical
reaction by permitting only certain chemical reactionsd¢owr and specifying the chemical reaction velocity.

Molecular statistics, such as the chemical reaction vglpapproximate the thermodynamics of the chemical
reaction and the environment of the chemical system. A cta&imgaction that is thermodynamically favorable either
releases energy in the form of heat, or increases the entfdpg chemical system. Berg, Tymoczko, and Stryer [29]
give the details of computing the free energy change of a atedmeaction to determine whether the chemical reaction
is thermodynamically favorable and can therefore occuntp@ously. Chemical reaction velocities act as fixed
formulas because of the assumption that the physical amthtitynamic descriptions of the chemical system are
essentially constant over time.

The chemical reaction assumption

The second assumption is that all chemical reactions atanitaeous physical events. Section 2.1 defined the ki-
netic formula and stoichiometry for a chemical reactioriddly. There are no restrictions against having chemical
reactions with non-integer stoichiometries nor are thestrictions against having chemical reactions that ire/tie
combination of many chemical products. Using this definitdd a chemical reaction, the class of permissible chemi-
cal reactions includes 3A——B andA + B + C——D. However, there is no physical analog to a chemical reaction
that involvesl.3 molecules of chemical specids Similarly, basic physics says that the simultaneoussiofi of a
molecule ofA with a molecule oB and a molecule of is so improbable that such collisions are neglectable.
Chemical reactions that correspond to a fundamental ritesteous physical event describe

o the synthesis.of.a-single.molecule of a chemical species,
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¢ the conversion of a single molecule of a chemical specierathar chemical species,
¢ and the collision of two molecules to produce chemical poisiu

An elementary chemical reaction is a chemical reactionriwdels one of these fundamental physical events.

Non-elementary chemical reactions, such as those that ugegaMis-Menten kinetics, empirically approximate
a series of elementary chemical reaction steps. There isnigue way to ‘unpack’ an overall chemical reaction
into elementary chemical reactions. In this dissertatimytion schemes that require elementary chemical reestio
assume that the modeler previously unpacked the non-etangahemical reactions in the model.

2.5.1 Discrete Approximation Schemes

Using just the two assumptions that the previous sectioasgabout the environment of the chemical system and
the structure of the chemical reactions, the only possiifeilation scheme is to precisely simulate the molecular
dynamics of the chemical system. A molecular dynamics sitinrt models the chemical system by continuously
tracking the position and velocity of each molecule. The potar evolves the chemical system by updating the
position of each molecule according to its velocity andttregthe collision of two molecules as a discrete event.

When two molecules collide, the collision is either reaetir non-reactive. In the case of a non-reactive collision,
the two molecules rebound away from one another. A non-kesobllision changes the spatial distribution of chemi-
cal species in the chemical system. In the case of a readiligian, a chemical reaction event occurs, and one of the
elementary chemical reactions modifies the population efiébal species in the chemical system.

Molecular dynamics describes the population and spatstidution of chemical species in the chemical system
as a function of time. Applying molecular dynamics pregissiulates the chemical system according to Newtonian
physics, ignoring effects such as quantum mechanics. Hewperforming a molecular dynamics simulation is too
slow to practicably apply to interesting biological praible Such models may have many thousands of molecules of
a chemical species that collide and interact between eéetesting chemical reaction event.

Well-stirred chemical systems and the stochastic chemicahaster equation

The observation that chemical species rarely have reaotiisions is the basis of a simplifying approximation for
molecular dynamics. Assume that for every reactive coltisa very large number of non-reactive collisions occur
in the meantime. Non-reactive collisions change the spdis&ribution of chemical species in the chemical system.
After a large number of non-reactive collisions, the spalistribution of a chemical species is essentially random.

The well-stirred assumption approximates molecular dyingaby positing that the molecules of a chemical species
continuously and evenly mix and redistribute themselvesifihout the volume of the chemical system. A well-stirred
chemical system is spatially homogeneous. Using the vieled assumption, it is no longer necessary to record the
spatial distribution of chemical species or to simulate ahthe non-reactive collisions. Instead, the population of
chemical species with discrete integer variates, |Cs|, ..., |Cn| or, in vector form,C, entirely describes the state
of the chemical system. Unlike previous chemical speciesbkes, which were concentrations, the chemical species
variables for stochastic equations are usually in termsuahtjty of substance. The volume of the chemical system
relates the concentration of a chemical species and thdityuaihsubstance of that chemical species.

The chemical reaction velocity vecte(C) = [v1(C) v2(C) ... vn(C)}T for the biochemical reaction
network gives each chemical reaction velocity as a funatibthe population of chemical species in the chemical
system. The probability that the chemical reaction witheig occurs over the next short interval of tinaé is
v;(C)dt. The probability that the chemical system has a populatfarhemical specie€ at timet, given that the
initial conditions of the chemical system are a populatibrcleemical specie€Cy = C(ty) at timety, is written
asPr(C;t | Co;to) fort > tg, or more simply a®r(C;t).

The stochastic chemical master equation [60, 92] giveshihage over time of the population of chemical species
in the chemical system as the partial differential equation

8Pr(§f; t) _ > v (C=8;)Pr(C—S;;t) = ¥ _v;(C) Pr(C; 1), (2.19)

J=1 Jj=1
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wheresS; is the column of the stoichiometry matrix that corresporwlthe chemical reaction with index Equa-
tion 2.19 contains two sums over probabilities. The first saiine probability of the chemical system transitioning
into the desired state from one of the nearby states acaptdithe chemical reactions in the chemical system. The
second sum is the probability of the chemical system triamsitg out of the desired state.

Gillespie’s stochastic simulation algorithm

Gillespie proposed a stochastic simulation algorithm [B@{t uses the well-stirred assumption and can compute a
probability given by the stochastic chemical master eguatd any desired degree of accuracy. Each invocation of
Gillespie’s stochastic simulation algorithm producesrapie pathC(t) that describes the evolution of the population
of chemical species in the chemical system over time. Repe&illespie’s stochastic simulation algorithm many
times, and treating the obtained sample paths as obsersdtimm a sample space, approximates the statistics of the
stochastic chemical reaction equation.

Gillespie’s stochastic simulation algorithm is an iteratprocess that simulates the reactive collisions between
chemical species. The steps taken by the algorithm traceumgessive populations of chemical species to describe
the sample patlC(¢).

1. Start at the known poir@, at the timet,

2. compute the total chemical reaction velocity, = 2?21 v;(Cp), among the chemical reactions in the bio-
chemical reaction network,

3. select random variatesandg uniformly from the interval0, 1),

4. find the smallest integgi such thale:;1 vj(Co) > avr,

5. advance the population of chemical species in the chésystem toC; = Cy + S;~,

6. advance the chemical system time o= to + (In 8~ 1) /vr,

7. and repeat this process to produce successiveGtgfss, ..., C, attimests, ts3, .. ., t,., respectively.

The algorithm terminates when > t,,... The state of the chemical system at timg, is then definitelyC,._; as
no chemical reaction event occurred between the timesandyt,..

Gibson and Bruck later developed a version of Gillespigsisastic simulation algorithm that is more difficult to
implement but computationally more efficient [58]. Howewie stochastic simulation algorithm remains too slow
for many interesting biological problem. Gillespie’s dtastic simulation algorithm requires sequentially sirtinta
every chemical reaction event. As the total size of the patjr of chemical species in the chemical system increases,
the expected step size taken after each chemical reactimt decreases and the expected total execution time of the
simulation increases.

2.5.2 Continuous Approximation Schemes

An alternative to trying to speed up computation of the disestochastic process that the stochastic chemical master
equation defines is to construct a new approximation scheatean jump past multiple chemical reaction events in

a single time step. Suppose that the population of chempedliss is sufficiently large so that the effect of chemical
reaction events over a small time scale, does not appreciably change the chemical reaction vgleeittor. In
other words,v((j) ~v(C) whenC is a population of chemical species that can arise from tipaagion of chemical
speciesC within a short period of time\t. Furthermore, suppose that at any time [to, tmax], the modeler expects
each chemical reaction in the biochemical reaction netwmdccur many times in the interval frotito ¢ + At. This
requires;that.every.chemical-species exists in at least rmtelamounts.
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If these two assumptions abait hold for the chemical system, then Gillespie concludesttiatiscrete stochas-
tic process that the stochastic chemical master equatiiimedds approximatable using a continuous stochastic pro-
cess [61]. This leads to the chemical Langevin equationghvisi the stochastic differential equation

V1 (C)Gi (1)

/2 (C)Ga(t
% = Sv(C) 2(C)G2(0) (2.20)
\% v (C)Gn(t)
where the7, (t), Ga(t), . . ., G, (t) are all independent Gaussian variables with mean zero andatd deviation one.
Note that in the chemical Langevin equation approximatioa chemical species populatidhs |, |Cs|, ...,|Cn| are

now continuous real variables instead of discrete integaaliles. The chemical Langevin equation is a continuous
stochastic process analogous to the stochastic chemisténeguation (Equation 2.19).

Research continues in the attempt to speed up stochastitasiom schemes. Tau leaping [116] is a method that
Gillespie and Petzold developed for use when all of the chalspecies populations are of at least moderate size. At
this scale size, stochastic effects still influence thewiarn of the chemical system, but purely stochastic methods
are much too slow. The tau-leaping method approximatesttiehastic solution by advancing the chemical system
solution over intervals of timer;, in which the number and type of chemical reaction eventeiasn. However, the
tau-leaping method does not determine the order of the aamngiaction events withinainterval.

Ordinary differential equations in the thermodynamic limi t

Although a computer can evaluate the chemical Langevintequenuch faster than the stochastic chemical master
equation, computing the stochastic noise term is still azgpe in comparison to computing the deterministic term.
There are also theoretical difficulties that the modelertrausid when using the chemical Langevin equation approx-
imation. The first difficulty is that the conditions Gillegpplaces on\¢ may not apply to the chemical system under
study, and these conditions are difficult to check. The sedifficulty is that, as Section 2.3.2 mentions, the modeler
must choose an interpretation of the stochastic integral.

A new assumption further simplifies the continuous appraion to the stochastic chemical master equation.
That assumption, the ‘thermodynamic limit’, is that the rheal system is operating in the limit where the volume
containing the chemical system goes to infinity, the popatadf chemical speciegC,|, |Czl, ..., |Cw| all go to
infinity, and the concentrations of the chemical speciesaiermonstant. In the thermodynamic limit, the deterministi
term of the chemical Langevin equation grows with the sizéhefchemical system. The stochastic noise term of the
chemical Langevin equation grows with the square root obthe of the chemical system.

As the population of chemical species grows larger, thehststic noise term becomes negligible in comparison to
the deterministic term. Therefore, the chemical Langeygimagion becomes in the thermodynamic limit

1/ U1 (C)Gl (t)
Vv2(C)Ga(1)

Jo(©ICa(t)

This is exactly Equation 2.14 for constructing a system fiédéntial equations from a biochemical reaction network.

Models typically require hundreds of molecules of each dhahspecies in the chemical system before the mod-
eler can employ the thermodynamic limit. Since this appr@tion discards the stochastic noise term of the chemical
Langevin equation, the resulting system of ordinary défgial equations is a deterministic process.

~ Sv(C), as|Cy|,|Czl,...,|Cm| — oo.
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Chapter 3

Modeling Processes and Methodologies

A modeling process is a grouped, repeatable collection efatfwns that modelers perform during the task of building
a model. A modeling process is itself a model that describesvork done by modelers. Modeling processes are a
means by which modelers formalize a natural system to pedathematical systems and a means by which modelers
interpret mathematical systems to derive information alacatural system. Modeling methodologies often guide a
modeling and simulation specialist during the design ofw nedeling process. A modeling methodology gives a
repeatable series of steps that modeling processes capamate and is intended to improve specific attributes for a
modeling process, such as efficiency, reliability, teditgband predictability.
The objectives of building a modeling process are to

¢ understand the methods that biological modelers employitd models,
e and develop ideas that allow biological modelers to builiibée models more efficiently and predictably.

It is not necessary to laboriously detail every task that aeher might undertake during model development. Many
modelers have unique practices that they employ while wagrki

A modeling process is not a complete recipe for solving a lerob Building a model is a difficult task, and
modelers must overcome many unforeseen obstacles betyredn successfully develop a new model. A modeling
process cannot substitute for experience, intelligenogood taste for designing models. A modeling process must be
parsimonious enough so that a biological modeler can utadetshe modeling process and integrate new techniques
without expending excessive effort. However, the modgliragess must also be complete enough so that the modeler
can apply the modeling process to their work. This chaptscriees

e amodeling process for constructing biological models tivates directly from observations of modelers build-
ing and testing models,

e a modeling methodology that supports several key attribisieperformance and quality in the construction of
biological models,

¢ and a new modeling process for constructing biological risodhat incorporates the modeling methodology and
observed modeling process, and proposes a reorganizatientain model development tasks.

Asking biological modelers to describe how they work, maan celate themselves to using one of two kinds
of modeling processes for building models of biochemicattion networks. The ‘constructive’ style of modeling
process starts with elementary chemical reaction stepshich the modelers add increasingly larger aggregates of
chemical reactions to better explain a biological proceBlse ‘empirical’ style of modeling process starts with a
sketch of the overall biological process, and modelers #teampt to continuously refine that sketch by replacing
a generalized step with more detailed components. Figurest3ows the difference in model evolution between
using-constructive.and.empirical-modeling processes. disgertation focuses on constructive modeling processes.

23

www.manaraa.com



24 CHAPTER 3. MODELING PROCESSES AND METHODOLOGIES

Figure 3.1: Difference in model evolution between usingstarctive and empirical modeling processes.
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However, modelers employ both constructive and empiriaadeting processes, and no one has shown that one type
of modeling process is conclusively better for biologicaldaling than the other.

There are two nested loops in a constructive modeling psocEable 3.1 gives a constructive modeling process
that is typical of a ‘bottom-up’ approach. The outer loop @&xgs the aggregate of chemical reactions. The inner
loop refines and tweaks the biochemical reaction networkvéduate the performance of the model and to make
subtle adjustments. Modelers can use early models from stremtive modeling process for making predictions,
even though these models explain only a subset of the olismrsaielated to the biological process. A constructive
modeling process terminates when the modeler is satisfatdhib developed model explains all of the observations
that the modeler identified as important.

Table 3.1: Outline of a constructive model building prodessroducing biological models.

Identify the distinguishing features of the overall cheahieaction.
Research the literature for experimental data on relevaarhical species and reactions.
Assemble a small, proposed model using elementary cheneetion steps.
(Loop)
(Loop)
Assign rate laws and kinetic constants based on experifmaatsurements and intuition.
Convert the proposed model into a computer solvable system.
Apply numerical methods to simulate the system.
Compare the numerical solution to the experimental data.
(End Loop)
Research the literature for experimental data about edtemical species and reactions.
Add additional elementary chemical reactions and inteiatec¢hemical species.
(End Loop)

An empirical modeling process also has two nested loopdeTah shows a typical ‘top-down’ modeling process.
The outer loop defines a boundary for the search space in whicmodeler attempts to locate a more refined model
of the biological process. The inner loop examines candidetinements for the model and selects between the
possible refinements. Early models from an empirical madghirocess explain the initial observations related to the
biological process but have little predictive power. An éncpl modeling process terminates when the justification
for the individual component pieces of the developed moalidfes the modeler.

This chapter examines two modeling processes for buildioipgical models. Later chapters employ these mod-
eling processes for building biological modeling softwaral attempt to measure the effectiveness of the modelers
that use each process. Section 3.1 is an observationalrstaafoan existing modeling process for building biological
models:—Then;-Section-3:2-introduces a general modelingegeomethodology and considers what this methodol-
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Table 3.2: Outline of an empirical model building processdmducing biological models.

Identify the distinguishing features of the overall cheahieaction.
Research the literature for experimental data on relevaarhical species and reactions.
Assemble a proposed model covering the overall chemicaticea
Establish experimental measurements of the inputs anditsuypthe proposed model.
(Loop)
Compile a list of plausible chemical species that may ach&smediates.
(Loop)
Generate a more detailed proposed model involving thenmediate chemical species.
Assign chemical reaction kinetics using empirical laws.
Convert the proposed model into a computer solvable system.
Apply numerical methods to simulate the system.
Compare the numerical solution to the experimental data.
(End Loop)
Research the literature for experimental data about eldtemical species and reactions.
Replace a step in the model with additional chemical reastand intermediate chemical species.
(End Loop)

ogy can provide to assist biological modelers. Finally,tlBec3.3 proposes a hew modeling process for biological
modeling. The remaining chapters of this dissertationystomgblementations of this new modeling process.

Contents
3.1 Original Modeling Process . . . . . . . . . . e e e 25
3.1.1 Primary Stages of the Original Modeling Process . . ...... . . . . ... ... .. .... 27
3.1.2 Secondary Stages of the Original Modeling Process . . . . . ... ... ... ..... 30
3.2 Modeling Methodology . . . . . . . . . . e e 32
3.3 Revised ModelingProcess . . . . . . . . . . 35
3.3.1 Primary Stages of the Revised ModelingProcess . . . . ... ... ... ........ 36
3.3.2 Secondary Stages of the Revised Modeling Process  ........ . . . ... ........ 40

3.1 Original Modeling Process

Figure 3.2 shows a model of the process that modelers in thenTiaboratory use to develop models of biochemical
reaction networks, including Chen et al. [41], Chen et &],[Movak et al. [106], and Tyson and Novak [132]. This
dissertation refers to the Tyson modeling process as thginat modeling process.” The original modeling process
evolved over more than ten years of practice developing mad#er than using modeling process formalisms.

The original modeling process does not currently have arittocumentation for novice modelers. However, the
original modeling process presently changes very littierévne so producing such documentation is feasible. Novice
modelers learn about the original modeling process prigntiiough demonstration and mentoring. A novice mod-
eler typically spends several months building models keb@mcoming proficient enough with the original modeling
process to attempt original work. The original modelinggass is a constructive modeling process.

In the ensuing text, the symbdl denotes the stage of the original modeling process labeidie symbol ‘X’
in the diagram, and such symbols mark the text where tha¢stisgdiscussed. A stage drawn with a solid line in the
diagram indicates the successful completion of a procedsremtext refers to such a process as a ‘primary’ stage. A
stage drawn with a dashed line in the diagram indicates an excovery activity and the text refers to such a process
as an ‘error-recovery’ or ‘secondary’ stage. Finally, thhee of thex stage given in emphasized text distinguishes the
name-of.a.stagefrom.the.name.of.a generic activity or process.
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26 CHAPTER 3. MODELING PROCESSES AND METHODOLOGIES

Figure 3.2: Original modeling process observed in the Tyabaratory.
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The modelers in the Tyson laboratory record biochemicaitiea networks using sketched diagrams and directly
convert the sketch of the biochemical reaction network tgséesn of differential-algebraic equations by hand, using
the algorithms that Section 2.4 described. This originadleling process partially standardizes the graphical eftsne
in a sketch of a biochemical reaction network. For exampd&necting two chemical species using a solid line
indicates the transfer of mass via a chemical reaction. €cting a chemical species with a chemical reaction using a
dashed line indicates an influence on that chemical realtidine chemical species, such as participating as a catalyst
However, like the original modeling process, modelers camicate the standard for using graphical elements in a
sketch of a biochemical reaction network orally rather tthaough written documentation.

Until recently, the modelers of the Tyson laboratory priityaused off-the-shelf tools for solving and analyzing
the systems of differential equations that they generatad biochemical reaction networks. Specialized tools for
pathway modeling were not available. They typically comstied the differential equation specification for a model,
including the parameters, initial conditions, and simalatontrol settings, using the ODE file format that G. Bard
Ermentrout developed for the XPPAUT integrator [51]. Ertneat documented the ODE file format but did not stan-
dardize the format. User documentation and tutorials aaéladble in the XPPAUT manual [51] and online at [52].
This documentation does not provide enough informatiosémneone to exactly duplicate the parsing and interpreta-
tion of ODE files that the XPPAUT program performs. Therefemme experimentation is necessary to interpret the
syntax and semantics of an ODE file and recover the origimaiénded model specification.

When modelers prepare a model for publication, they skétetbtochemical reaction network using a graphical
figure, the differential and algebraic equations as mathiealdormulas, and the numerical values of parameters
and initial conditions as text in tables. In many cases, aifipation of the simulator and simulator control settings
does not accompany the published model. Instead, the madeak laboriously duplicate the method by which the
simulator interprets the system of differential-algebeguations. By performing simulation runs and comparirg th
time series output that the simulator produces with figufdgme series plots given in the publication, the modeler
can infer the necessary changes to the simulator conttoigst

Before modelers can begin working on a model, they first nuesttify the problem that the model will solve. This
process, known as ‘problem formulation’, includes an asialgf requirements, an identification of a solution method,
and-a-specification.of-modeling.objectives [19]. Unless tloelefer starts from a formulated problem, there is a risk
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3.1. ORIGINAL MODELING PROCESS 27

of inadequately solving the problem or solving the wrondggbem. Preferably, the initial modelers record the output
of problem formulation in some lasting form, such as a sdiergublication, so that future modelers can refer to the
modeling requirements and objectives while working on thoelet.

The original modeling process does not include problem édation as an explicit step. During the construction
of the original modeling process, there was insufficienteobation of this particular group of modelers formulating
completely new problems in the sense of wishing to develompdeahfor a new organism or to apply new solution
techniques to a previously developed model. Instead, thggreded existing models by attempting to match additional
experimental observations. Itis unknown if this infrequerfiormulation is an inherent property of the problemsé¢hes
modelers are attempting to solve or is a side effect of thealogl process that they are using. Observations with
different modelers and modeling processes might answegtkéstion in the future.

3.1.1 Primary Stages of the Original Modeling Process

The original modeling process has four primary staglesign translate, evaluate andaccept The modeler creates
the model in thedesignstage and converts the model to a computer understandablatfin thetranslate stage.
During theevaluate stage, the modeler tests the model to determine its perfarenaith respect to the modeling
objectives. Finally, thacceptstage results when the modelers produce a presentable frmdehe information that
they recorded during model development. Along with thegmany stages, there are additional error recovery stages
that a modeler performs after detecting an error duringtfaduatestage.

design
E—

Thedesignstage typically begins with the modeler creating a wiriregdam from an idea of how a biological process
occurs. A wiring diagram depicts the biochemical reactietwork of the proposed model. As Section 2.4 described,
the format of a wiring diagram is a graph that captures thenite reactants and products at the vertices and represents
chemical reactions that create, destroy, and convert ttieaical species using labeled, directed edges. Addltiona
the wiring diagram may note the kinetic information for a wtieal reaction. Figure 3.3 is a wiring diagram that
depicts the post-translational modification of cyclin, eaportant regulation process, Xenopus laeviextracts based

on the model by Marlovits, Tyson, Novak, and Tyson [87].

Figure 3.3: Wiring diagram of a regulatory procesXenopus laevisxtracts.
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Although there are wiring diagram styles that the modelerthé Tyson laboratory share, the larger modeling
community-has-not.standardized.the notation for wiring dhiags. Modelers often invent ad hoc notation to express
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abstractions, replication, and unusual processes. Fangra modelers frequently abstract a complicated process
involving several steps that appears multiple times in threngydiagram. The wiring diagram notation of Kohn [80]
employs abstraction to represent concisely the intenactionultiple chemical species.

Removing details from the wiring diagram simplifies the praation of the model and saves space during pub-
lication. In the publication text, the modeler describes ¢xcised process, gives a notation that stands in place of
that process in the wiring diagram, and lists the chemicatigs that each instance of the process uses. However,
splitting the presentation of the model between the wiriragthm and text makes accurately duplicating the results
of the model harder. The reader of the publication must ctigreeassemble the model from the split presentation.

Figure 3.3 is simple enough that communicating the esddatitures of this model does not require much abstrac-
tion. Still, the figure includes a key that links particulanghical shapes with named chemical species to reinforce
visually the idea that chemical reactions assemble andsbsiate these molecular complexes. In addition, the gyirin
diagram uses the special notation of drawing four circleindicate degradation of the chemical spediagB and
the notation of drawing a single, attached circle to indidae phosphorylation state of a chemical species.

Chemical reaction kinetics frequently have a presentdliahis separate from the wiring diagram. In some cases,
the publication omits the chemical reaction kinetics eftyirand the reader must infer the kinetic information from
other figures. Without the full details of the chemical réatkinetics, it is possible to structurally analyze the rabod
but not to perform simulation. Since the wiring diagram oftecks some details of the chemical reaction kinetics, it is
typical for modelers to first rewrite the model as a collectidchemical reaction equations, along with the approgriat
chemical reaction kinetics. Ttoesignstage terminates after the modeler assigns chemical sedgtietics to all of
the chemical reaction equations. Although Figure 3.3 ifiestthe transfer of mass of chemical species from chemical
reactions and regulatory signals, the figure gives no itidicas to how or at what rate the chemical reactions occur.
Table 3.3 explains the chemical reaction kinetics as amatiju

Table 3.3: Chemical reaction equations and rate laws foXéreopus laeviextracts model of Marlovits, Tyson,
Novak, and Tyson.

Chemical reaction equation Kinetic formula
. PF. i
Cisom, Cisom, Eeyr[Csomy,] ’ key s ((MPF,] + €3)[Csomy]
Jeyr —1(—[ [Csom]a] i Jeyr + [CSOHF] ]
kWeef MPF,| + €3)[Wee, kw eer | Wee;
Weea Weel JWeef + [Weea] , JWeeT + [Weei]
025 095 k25,[C25,]  k257(]MPF,] + €1)[C25;]
o ' J25, + [C25,]" J25; + [C254]
k1
e——>(CycB k1
CycB——>o (kb[Csomy] + k5 [Csom,])[CycB]|
k3
CycB + Cdkl——>MPF, k3[CycB][Cdk1]
MPF,——Cdkl (k5[Csomy;] + k4 [Csom,]) [MPF,]
MPF,~—=MPF; (ki [Wees] + k7 [Weea]) [MPF ], (k¢[C25;] + k/[C25,])[MPF;]
MPF;——>Cdk1 (kb [Csomy;] + k4 [Csom,]) [MPF;]

translate
—_

Thetranslate stage is the process of converting the chemical reactioatems written for the biochemical reaction
network model to a computer understandable form, typiGatlystem of ordinary differential-algebraic equations. Fo
each chemical species in the model, the modeler createslaraoy differential equation by using the algorithms that
Section 2.4 described.

Modelers estimate parameter values for the rate laws us@igihtuition or knowledge about the chemical system.
Frequently;-the-modeler.does.-not know exact numeric valoethese parameters. Instead, the modeler gives an
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initial estimate for each of the parameter values and themiroaously updates these guesses based on the feedback
from model evaluation. The original modeling process idelithe repeated adjustment of parameter values, which
modelers often describe as ‘parameter twiddling’, asréfié error recovery stage. A modeler engages in parameter
twiddling when simulation of the model fails to adequatelpnoduce the experimental observations.

In some cases, chemical reactions convert a chemical sgestiween different forms but neither create nor destroy
that chemical species. As Section 2.4.2 described, thedo#mtity of such a chemical species is conserved and an
algebraic expression can replace the differential egndtioone form of the chemical species.

When the model contains a conservation relation, the sefeof which differential equation the conservation
relation replaces is not relevant for numerical integrati@ny choice of a chemical species for elimination leads to a
consistent and mathematically equivalent representtdiche model. Therefore, the choice of how to mathematjcall
express the conservation relationship depends upon thizetiepreferences of the modeler. Often, modelers prefer
writing the conservation relation in a ‘biologically sugdige’ form, which requires writing the conservation réat
so that all of the computed chemical species values andtatalnon-negative.

Figure 3.3 corresponds to a system of six ordinary difféaéetjuations and four conservation relations.

d[C25,] _ k25, (MPF,] +€1)[C25]  k25,[C25,]

dt J25; + [C25] J25, + [C25,]
[C25;] = 1.0 — [025,] (3.1)
d[CgftcB] = k1 — [CycB](k[Csom;] + k5 [Csom,) + k3[Cdk1])
% — ki [CyeB][CdKL] + (K.[C251] + K/[C25.])[MPF;] —
(k! [Weei] + kil [Weea| + k5[Csom;] + k5 [Csom,])[MPF,]
AT — Gk [Weer] + ke [Wee, ) MPF,] -
(kL[C25;]) + kI [C25,] + kb [Csomy] + kb [Csom,])[MPF;]
[Cdk1] = 1.0 — [MPF,] — [MPF;] (3.2)
d[Wee,]  k[Wee],[Wee] k[Wee] s ([MPF,] + €2)[Wee,]
dt —— J[Wee], + [Weei] J[Weel ; + [Wee,)
[Wee;] = 1.0 — [Wee,] (3.3)
d[Csom,]  keyr([MPF,] 4 €3)[Csomy;] Eeyr [Csomy,)
dt o Jey s + [Csomy] - Jeyr + [Csomy,]
[Csom;] = 1.0 — [Csomy,] (3.4)

In this model, the chemical speci€dc25 andWeel convert between an active and inactive form via phosphbtioyla
but there are no chemical reactions for their synthesis gradtation. Similarly, the chemical speciégkl1 is present
as a free molecular species, bound as a complex in aktR®, and bound as a complex in inactiPF, but no
chemical reactions create or destgk1. Phosphorylation and dephosphorylation conkRE between its active
and inactive forms. These chemical species have a congervatation in the place of their differential equation
(Equations 3.1, 3.2, 3.3, and 3.4).

In addition to having a continuous differential equationdalp some models also include a discrete event model.
A discrete event is an instantaneous change to the modeahitest place in response to a trigger condition. Discrete
events take place either immediately after meeting thgarigondition or after an event delay, which is some offset
time into the future. Modelers describe certain cellulasogsses, such as cell division, with discrete events that
set chemical species concentrations, change parametessyallter chemical reaction kinetics, and switch between
different systems of differential equations for the contins model.

The addition of discrete events to a model makes the modeifisiantly more difficult to simulate. Finding the
exact-time that.a-simulation.meets the discrete event triggedition requires the construction of an approximation
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function to the differential equation solution and locgtthe roots of that function. Furthermore, many of the com-
monly used numerical integrators manipulate the integndtistory to predict the behavior of the differential edomat
solution better in the near future. The numerical integratast destroy this recorded integration history when a dis-
crete event takes place. The model that the numerical mtigconstructs for the differential equation system is no
longer valid after the chemical species concentrationsffardntial equations change.

evaluate
_—

Theevaluatestage begins with the modeler generating time series platspmrtant chemical species concentrations
from the model. A time series is the output of applying nuicarintegration to the system of differential-algebraic
equations. Each step of a time series reports the condensaif the chemical species in the model at a particular
momentin time. Typically, a numerical integrator outpinsd series steps at regular intervals, regardless of thekct
integration steps required to simulate the model.

The modeler sets the parameters and initial conditions ®fntlodel to match the conditions under which an
experimentalist conducted an experiment. For exampleX#rmopus laevigxtract model has several experimental
observations that divide the initial concentrations of themical speciedIPF among its various, related forms.
The modeler must compare the time series plots with the arpetal observations and then judge whether the model
adequately represents the biological process and fulidisrtodeling objectives. In the simplest case, the expetiathen
observations measure the change of a chemical speciesovautime. These experimental observations closely align
with the data format that a numerical integrator uses fopottand model evaluation is straightforward curve fitting.
If the observations are of phenotypic properties, then megduation requires a skilled modeler.

Cell cycle models typically have higher-order experiméabservations that the modeler must work to interpret.
An example of a higher-order observation is whether a cpliagenting a particular mutant strain viably reproduces.
The time series plot must exhibit a checklist of requireradnt the modeler to declare the mutant strain viable.
These kinds of observed properties require that the modetapret the time series plot to see if the model matches
the experimental observations. Often, it is difficult to mdkm rules that guide the modeler in performing this
interpretation of the model output. The modeler relies duiiion and experience when making the comparison.

accept
—_—

Once the modeler is confident that an evaluation indicatstiie model adequately reproduces the biological pro-
cess and fulfills the modeling objectives, theceptstage begins. Thacceptstage consists of final preparations
for archiving and disseminating the model. Typical meansdieseminating models include web sites and scien-
tific publications. A publication typically includes a skhbtof the final biochemical reaction network, the system of
differential-algebraic equations that correspond to tloelemical reaction network, and the parameters and linitia
conditions that the system of differential equations ugeklitionally, the modelers record the experimental obaerv
tions and the procedure that they used for model evaluatimadlelers often provide the time series plots from model
evaluation that depict the performance of the model ag#iestxperimental observations.

3.1.2 Secondary Stages of the Original Modeling Process

The remaining stages in the original modeling process aog-ezcovery stages. An error is an inadvertently incdrrec
model element. Errors can result from both the biology ofttealel and the process of building the model. Krahl [81]
describes several classes of errors for general-purpodeling, all of which can occur in biological models.

During model evaluation, the modeler detects errors in tleelghby examining the time series plots that the
numerical integrator produces. The modeler must infer @teine of an error and its location in the model from
experience. Itis not always possible for the modeler to eately identify the cause of an error. Additional laborgtor
experiments can test a hypothesis about a model error, bigrpeng new experiments is extremely expensive. In
general, the modeler must correct an error in the model umihgthe existing collection of experimental results.

Modelers often make many iterations between model refinearehevaluation before the model begins to work.
However;-a-model-missing-important chemical reactions oftolgical mechanisms is likely to have no choice of
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parameters that can adequately reproduce the desiredibehbthis case, the modeler must redesign the wiring
diagram to incorporate these dynamics. Finally, the madebsy conclude that there is no hope of fixing the model,
or that the cost of fixing the errors in the model is prohilgtiand discard the model in favor of another idea for how
the biological process occurs.

repair
R

The modeler invokes theepair stage when it is necessary to correct errors made whilelatangfrom the biochem-
ical reaction network to the system of differential equasioThere are two sources of such errors:

e converting the wiring diagram to chemical reaction equetjo
e and converting the chemical reaction equations to a sysfetifferential equations.

Vass and Schoenhoff [136] observed that many modelers coemairs while creating the system of differential
equations. Moreover, the error rate increases when théadinical reaction network is complex.

Although a modeler can mechanically follow the process 8ettion 2.4 described, manually creating a system
of differential equations from a biochemical reaction nativis both time-consuming and prone to error. Tedious
checking between the wiring diagram and differential eiguatis the only means for detecting and correcting errors
that a modeler introduced during model translation. Ea@ntbal reaction equation leads to an influx and efflux
term in the system of differential equations. Quite oftemgaror in the translated model results from the alteration
or omittance from the regulating equation of one of thesmserThis type of error is common among inexperienced
modelers, although practice and experience can partiatigate the problem [136].

refit
—

The modeler invokes theefit stage when it is necessary to correct errors made whilerasgigumerical values to
the differential equation parameters. As mentioned earfiedelers frequently do not know exact numeric values for
these parameters from laboratory experiments. When thehwdot performing correctly, a modeler can make new
estimates for the kinetic parameters based on past coroparis the model against the known experimental results.

Selecting how to adjust the model parameters is highly dégarupon the current intuition that the modeler has
for how the model should respond to parameter value chariasng each iteration, the modeler typically changes
only a small number of parameters due to the potential iotenas of the changes. The modeler often must repeat
this type of error recovery activity many times before thedeldegins to work. Each time, the modeler successively
chooses different parameters to adjust and different atsdunwhich to adjust those parameters. The process of
parameter twiddling is the repeated adjustment of paramwatees in an attempt to align the model output with the
experimental observations.

redesign
—_—

After trying parameter twiddling, the modeler may decidatthn error in the model is not correctable without modi-
fying the biochemical reaction network. The modeler inieeredesignstage when making changes to the wiring
diagram or rate laws. Modelers apply their biological ititr and past modeling experience to change the model by
adding, removing, and modifying chemical reactions so thatmodel better reproduces the desired behavior. The
modeler must then again translate the model into a systerffefahtial equations and evaluate the model against the
experimental observation. Since adding or removing evémgeschemical reaction from the model can greatly affect
the model output, an extensive period of parameter twiddiifien follows the redesign of a biochemical reaction
network. The modelers in the Tyson laboratory perform patamtwiddling much more often than model redesign.

restart
—_—

Finally, the modeler may decide that correcting an erroh@rhodel is either too difficult or that correcting the error
would-costimore than-creating.an, entirely new model. Notyewew biological idea becomes a successful model,
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and it is most efficient if the modeler weeds out the unprotédeas before proceeding through many iterations of
the model development process. Triestart stage is the termination of a particular biological idea amatiel, and
proceeding through this stage marks the start of the neatfehow the biological process occurs.

3.2 Modeling Methodology

Modelers have used the original modeling process observétki Tyson laboratory to successfully develop models
that define the current state of the art. However, these ramgjend the larger modeling community, recognize that
they are at the limit of the complexity that their current htaetology can support, which is driving many new efforts
in modeling tool development. Examples of related develeprefforts for modeling tools include Cell Designer [56,
78], E-CELL [130, 131], Gepasi [94, 95], Jarnac [122, 123 Cell [6, 9], and Virtual Cell [86, 125]. Hucka et
al. [71] survey the capabilities of many of these modelimggo Furthermore, some groups of tool developers have
joined forces in larger modeling efforts, such as the opemcsBio-SPICE framework [30].

The proliferation of modeling applications suggests thatlel development has much untapped potential that a
lack of computational assistance currently hinders. Hargdtere are few opportunities for automating model devel-
opment tasks in the original modeling process. Instead giticial to look for steps that the original modeling praces
does not explicitly call out. Additional opportunities fautomating model development appear after decomposing the
steps of activities in the original modeling process.

The only activity in the original modeling process with aargotential for automation is the conversion of the
chemical reaction equations for the model into a systemftdréntial equations. Although this translation process i
both error-prone and time-consuming, the creation of amedpinew system of differential equations does not take
place frequently and is not a bottleneck for producing wedked biological models. Translation time is incommen-
surable with the time spent designing and evaluating a maddelreover, the proportion of time spent performing
translation decreases as model size increases. After telerdnitially converts the model from chemical reaction
equations to a system of differential equations, the chedgee to the chemical reaction equations of the model during
error-recovery activities are typically small and requiredifying only a small number of the differential equations

Modeling methodologies assist in understanding the moeetldpment process and indicate requirements for
supporting that process [22]. Formal methodological appihes for modeling provide well-defined and tested tech-
nigues. There is no apparent best approach for applying a@lngdnethodology to an existing modeling process.
However, after aligning the original modeling process vtita features in the modeling methodology, it is clear that
there are activities that the modeling methodology costain that the original modeling process omits. Adding in
the features that the original modeling process omits sdikena natural approach to take. These discovered acsvitie
contribute to a new modeling process for constructing lgicial models.

Modeling methodology requirements

Based on the observed experiences with the original maglphiocess, it is clear that this modeling community would
benefit from a modeling methodology that supports severdifip capabilities. The ultimate goal of a modeler is
to produce a model that validates against the modeling tigscand wins approval from the decision makers. As
Section 1.1 described, demonstrating that a model is valide&ceptable requires that the modeler perform verifica-
tion, validation, and testing on the model. Modelers shaumbloy verification, validation, and testing frequently so
that models that contain errors waste a minimum amount oftdff9]. If the modeler generates an incorrect system
of differential equations from the chemical reaction etpreg, then it is likely that the model cannot pass the evalua-
tion process with any set of parameters. Testing the mod=tsare that the differential equations are correct would
prevent the modeler from wasting many hours futilely twidglparameters.

Several of the models that modelers using the original nioglgdrocess developed are extremely long lived.
Modelers repeatedly adapt these models to meet changes imdteling objectives and requirements. This is one
of the reasons why the original modeling group carries ooblgm formulation so infrequently. Instead of starting a
new model to explore a biological process, modelers takexstireg model as a base and adapt the existing model to
accommodate the.newly-proposed pathways for the biochéremetion network. Model reuse promotes economical
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model development by eliminating the duplication of workghucts that the two models share. However, successful
model reuse requires that the modelers choose sound models.

In some cases, when the new biological process is signifjcdifferent from the biological processes that an
existing model captures, modelers use a motif from the iegishodel instead of the entire model. Using only part
of an existing model speeds up model development for the neladical process by allowing the modeler to avoid
problematic interactions between the new model and egistindel through the parsimonious selection of the most
important aspects of the existing model. However, the nevddiould assume that the ultimate goal of model devel-
opment for both the new model and existing model is to evdigtpeoduce an integrated model that is self-consistent
and explains both the original and new biological processes

It is reasonable to expect that this modeling group will ¢ure to base new models on existing models, and so
these modelers require a modeling methodology and probasarte capable of introducing change at an advanced
stage of model development without undue cost. Furtherpiioseems apparent that computational technology will
change significantly during the lifetime of a long-lived nebdThe previous generation of models encountered such
changes. Thus, the models and the modeling process showddrandependent of the runtime host and adapt to high-
performance computing techniques of the next ten years oe.mdsing the terminology of Nance and Arthur [103],
the modeling methodology and process must primarily suppmrectness and testability, secondarily support adapt-
ability, maintainability, and portability, and test thighwout the model lifecycle.

The primary requirements of correctness and testabildgnfthe modeling process correspond to the need for a
thorough and repeatable performance of model verificatialigation, and testing that ultimately produces a model
that meets the model evaluation requirements. In conmewtith the need for the modeling process to support testa-
bility, modelers need to test their models throughout thel@htifecycle to reduce the amount of effort that they waste
on models that contain errors.

The secondary requirements of adaptability and maintdityafioom the modeling process correspond to the need
for reusing existing models in the creation of new models éixalain biological processes that the original modeling
effort did not envision. Finally, the other secondary reguoient of portability from the modeling process corre-
sponds to the need for keeping the model representatiopémdient of the modeling environment so that models are
transportable between modeling environments. As advandeshnology and high-performance computing render
existing modeling environments unsuitable for continuedkynew modeling environments will arise.

Conical methodology

The conical methodology [100, 101, 102] is a modeling metthagly that supports the identified requirements and
is sufficiently adaptable to capture both the original modeprocess and a further revised modeling process that
contains new modeling activities. Balci [19] describes agidifecycle compatible with the conical methodology that
includes verification, validation, and testing activiti#e remainder of this section describes the conical metloggt
using terminology from Balci [18], Overstreet [109], andg@4112].

The domain of applicability of the conical methodology is firoduction of large discrete event models. Although
the biological models in this dissertation are not discestent models, biological modelers use a similar model life-
cycle and construct similar kinds of model descriptionse Tévised modeling process uses the conical methodology
to define terminology and to generalize the model descriptio the original modeling process.

The conical methodology prescribes a top-down model defimithase and a bottom-up model specification phase.
The revised modeling process omits the model definition @lfrasn the conical methodology. The revised modeling
process has a limited domain of applicability, which allomedeling tools that implement the revised modeling
process to predefine model constructs. The conical metbgdalrdinarily elicits a description of model objects and
attributes from the modeler during the model definition ghas

The conical methodology begins with a communicated probkfnommunicated problem’ is the most elemental
form of a problem that an individual or group wishes to solféee communicated problem is a modeling problem
from a particular domain. In this dissertation, the domdia problem is always biology.

The modeler then performs ‘problem formulation’, whichtie process of restating the communicated problem so
that the problem is well-defined and amenable to specifioaciihe output of problem formulation is a ‘formulated
preblem’swhich.permits.a.decision with regard to a viablemoe of solution. Next, the modeler investigates possible
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solution techniques with the aim of selecting a techniqa tfas a high ratio of benefits to costs. Both the conical
methodology and revised modeling process assume thatdpeged solution technique is simulation.

After proposing to solve the formulated problem using saioh, the modeler then defines the requirements
of the modeled system and the objectives of simulation. Emeainder of the conical methodology is an iterative
process for model construction and testing. A successfuliagtion of the conical methodology results in a model
that decision makers find acceptable. The conical methggaloes not explicitly terminate except in the case of
successful completion of a model. The revised modelinggs®cefers to the system requirements and simulation
objectives as the ‘problem definition’. As Section 3.1 men¢id, both the original and revised modeling processes do
not include problem formulation as an explicit step. Thésed modeling process assumes the existence of a problem
definition before the modeler begins using that modelingess.

After establishing the system requirements and simulatlgactives, the modeler formulates a conceptual model
that represents the system under study. A ‘conceptual riis@elepresentation of a model that exists only in the mind
of the modeler. Page [112] describes a conceptual modetiodhical methodology as likely incomplete, ambiguous,
and constantly in flux. Taking a slightly different approaahconceptual model in the revised modeling process is
an instantaneous snapshot of a biological idea and henahanging. However, a biological modeler may consider
successively within a short time many different conceptuadiels to solve a modeling problem.

Only the conceiver of a conceptual model can work with or pitttat model. Therefore, the modeler next realizes
the conceptual model into a form suitable for communicatiosthers. The ‘communicative model’ is a representation
of the model that other modelers can understand and thatseridependently from the original modeler. Other
humans can compare a communicative model with the systeuireegents and simulation objectives, and perform
verification, validation, and testing on the model.

Following the conical methodology, the modeler next engag@rogramming, translating the specification of the
communicative model into a general-purpose or simulati@my@mming language that a computer can compile and
execute. The output of programming is a ‘programmed modal todifies a selection of programming languages, a
specification of the execution environment, and an exetaitapresentation equivalent to the communicative model.

The revised modeling process diverges from the conical ottlogy at this point, eschewing the conventional
notion of programming. The target audience of the conicahodology is modeling and simulation specialists.
However, the target audiences of the original and revisedieting processes are experts in the field of biology, many
of whom are not comfortable with traditional programmingthoelology and practice. The revised modeling process
uses the more general term ‘executable model’ to distiingthat the executable specification of the model does not
necessarily come from programming. Chapter 4 describgsrteess of producing an executable model.

Judging the acceptability of a model with respect to theesystequirements and simulation objectives requires
the design of model experiments. The modeler formulatesia filat extracts information from the model to draw
inferences. An ‘experimental model’ is an instrumentedsiar of the executable specification that facilitates a par-
ticular plan of investigation. In the original and revisedaheling processes, biological modelers use comparisons
between model output and historical laboratory data to dréd@rences. The conical methodology is more general,
not assuming the use of a particular technique for modeyaizal

The modeler then performs the plan of the experimental modaioduce experimental results. Although changes
to the execution environment can affect the experimengalltg, the revised modeling process assumes an abstracted
execution environment, with negligible differences besweorrect implementations. The conical methodology also
does not correct for this issue. After examining the experital results, the modeler chooses to either accept the
model or continue changing the model. It is not clear fromdbeical methodology how the modeler makes this
decision. Supposing that the model is acceptable, the raottedn interprets the results and presents conclusions to
decision makers. The decision makers then propose actsmulmm these results, although their decision may have no
relation to the validity of the model or its results [112].

The primary objectives of the conical methodology are atess, testability, adaptability, reusability, and main
tainability [103]. These primary objectives match well wihe identified primary and secondary modeling process
requirements. The secondary modeling process requireshenttability is notably absent. It is necessary to instead
put the burden of portability on the modeling tools to iseldte modeler from the underlying representation that the
tools use for the models. Separating the model that the rapdeés in a user interface from the computer represen-
tation-of-the.model-allows.modelers to move a developed mioded existing to future tools. This accomplishes the
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goal of protecting the modeler and developed model from gbain the computational environment.

3.3 Revised Modeling Process

Like the original modeling process, the revised modelingcpss assumes that the modeler previously defined the
modeling problem to solve. Figure 3.4 shows the revised iraglprocess starting from an identified problem. This
problem definition includes an analysis of modeling requigats, a plan for solving the modeling problem, and an
identification of the modeling objectives that are relefantecision makers. As with the original modeling process,
the revised modeling process is constructive.

Figure 3.4: A revised modeling process that combines thgrai modeling process with the conical methodology.
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The revised modeling process assumes that the tools thagleredemploy to solve the modeling problem are
adaptable to the solution technique chosen as part of thegnodefinition. Restricting the revised modeling process
to the particular domain-specific group of problems thaldgjwal modeling encompasses justifies this assumption. A
primary driver during the development of the revised maugprocess and associated modeling tools was the needs
of biological modelers who work on this class of problems.

The revised modeling process uses the same notation forltiegcstages as the original modeling process. The
location, scope, and frequency of model testing activiiesthe most significant differences between the origingl an
revised modeling processes. Modelers using the revise@linggprocess get immediate feedback about model errors
after transforming the model from one form to another. Foomsrthat the modeling tools cannot detect automatically,
the modeling process can aid the identification of the soancktype of error by more specifically pinpointing when
the modeler introduced the error. Localizing the sourcembalel error reduces the amount of time that the modeler
spends diagnosing the problem.
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Increasing the specificity of error reporting should lead tmaller average error-recovery time. Fault isolation is
one of the most difficult and time-consuming portions of theerecovery process. Moreover, even though it is not
always possible for modeling tools to automatically dethetsource and location of an error, performing modeler-
defined diagnostics can determine that the modeler definitebduced an error during the previous iteration of the
modeling process. Since iterations typically reflect a sil@nge to the model, the modeler can search within a
limited set of possible sources for the error.

Terminology from the conical methodology appears in thésesl modeling process. Table 3.4 summarizes the
connection between terminology in the conical methodobmy concepts in biological modeling.

Table 3.4: Connections between concepts in the conicaladetbgy and biological modeling.

Modeling term Biological modeling examples
problem definition list of important experiments to reptea
conceptual model biological ideas
communicative model wiring diagram, mathematical equestitextual description
executable model ODE file, Matlab script, program code
experimental model time course plots, experimental olagienys from the literature
experimental results list of mutant strains that the modedligts correctly
accreditation peer review of scientific publications

3.3.1 Primary Stages of the Revised Modeling Process

Starting from the problem description, modelers beginrthvairk by first developing model ideas that they believe
will satisfy the problem requirements. The revised modgjpirocess extends the process of realizing and testing these
ideas from the original modeling process. The revised niodgrocess adds an additional primary stage ctieck
stage, to the four primary stages of the original modeliracpss. The primary stages that the original and revised
modeling processes share have similar semantics betwesa tlvo modeling processes. The reveck stage uses
the outputs of several model evaluations to perform furtegnostic checks on the model.

A more significant difference between the original and redisnodeling processes is in the performance of error-
recovery activities. In the original modeling process,itiaeler undertakes error-recovery activities after aeitging
the results of a model evaluation. Considerable time cas pasveen the introduction of an error and performing
model evaluation. Errors that the modeler introduced ihtorhodel long ago are harder to diagnose and recover
from than errors that the modeler introduced more recehtlthe revised modeling process, the modeler undertakes
error-detection activities, and potentially error-reegractivities, subsequent to each primary stage.

design
—

After coming up with an idea for a biological process, the gledmust first produce a model that other biologists can
understand. At the instant that the modeler conceives od@a for a biological process, the model exists only in the
mind of the modeler. Thdesignstage is the process of taking that mentally held model, émeeptual model, and
producing a model that is accessible to other modelers,dimermunicative model.

In the original modeling process, the output of thesignstage is a wiring diagram. Out of necessity, which the
typical lack of the required chemical reaction kineticshie tiring diagram causes, a secondary output ofifegn
stage is a collection of chemical reaction equations anetkifiormulas that corresponds to the wiring diagram. In the
revised modeling process, the output of tesignstage, the communicative model, is always the chemicatiozac
equations and kinetic formulas that define the model.

Modelers can still make use of wiring diagrams, but the miodgbrocess no longer requires the production of
a wiring diagram. A wiring diagram can also act as an inteliatedproduct in the conversion from a conceptual
model to a communicative model. This change to the modelnoggss gives modeling software the freedom to
represent.the.model-underdevelopment using chemicaioeauations directly. Modeling software might choose
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to use chemical reaction equations as the model repregemiv@cause chemical reaction equations are typically more
amenable to computer manipulation than a graphical wiringrdm. Furthermore, modeling software can separately
target different user groups of modelers by offering vasitevels of user interface support for chemical reaction
equations versus wiring diagrams.

The choice between the textual form of chemical reactioratiguns and the graphical form of a wiring diagram is
similar to the divide between textual and graphical inputiany other application domains. Even though a modeling
tool may choose to use chemical reaction equations as thexlyimd) representation for models, it is still possible for
the tool to record and display a wiring diagram to aid in thenomunication of the model.

The revised modeling process also includes testing aetviit thedesignstage. Modeling tools can apply testing
activities while the modeler constructs the communicathadel. These testing activities are the first indicators
of an error in model development. Modeling software at tiégys can structurally test models, check models for
completeness, and check user input for validity. Table Bdws a selection of testing activities for tesignstage.

Table 3.5: Questions that testing activities can try to arguring thedesignstage.

¢ |s there a definition for every chemical species involved amemical reaction?

¢ Is there a stoichiometric coefficient for every chemical$gginvolved in a chemical reaction?
e Are there chemical reaction kinetics for every chemicattiea?

e Is there a definition for every parameter used in a kinetimida?

e Arethe open and closed systems in the model in correspogaaéticthe conceptual design of the modelef?

¢ Do the dynamics of the model hold invariant those particptaperties chosen by the modeler?

¢ Do the conserved moieties in the model match the understgrdithe chemical system held by the mod
eler?

translate
—_

After creating a communicative model, the next step a madaless is to convert the model to an executable form.
The executable form, an executable model, includes a systefifferential equations, initial condition values, and
parameter values. In the original modeling process, theateoaheeded only this information to produce time series
plots of the model. The simulation software and settingstlier simulation routines existed independently of the
model. However, the executable model incorporates infitomabout the simulation software, simulator control
settings, and runtime environment as part of the model. &h&ires that the model continues to produce the same
output when someone other than the original modeler triesatuate the model.

In the original modeling process, the modeler translates)fchemical reaction equations and kinetic formulas
to a system of differential equations by hand. As previoutiees noted, manually performing the process in Sec-
tion 2.4 is both time-consuming and error-prone. Autontathis translation process is desirable. A well-described
model contains all of the chemical reaction kinetics, atitiondition values, and parameter values for automatistra
lation using modeling software. The modeler needs to twedk e environmental information that describes the
simulation software, simulator control settings, and imetenvironment.

Even though the revised modeling process automates manglrradslation activities, modeling software still
must verify that the executable model is complete, selfsitant, and tolerant of the numerical errors to which the
chosen simulation process is susceptible. Table 3.6 sheeteetion of testing activities for theanslate stage.

evaluate
—

The modeler next uses the executable model to perform a s#nofations for model evaluation. Model tests are
recorded-experiments.that-apply-controlled inputs to theehand measure the response of the model. Model tests
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Table 3.6: Questions that testing activities can try to argiuring theranslate stage.

e Is there an initial condition specified for every chemicaaps that the chemical system contains?

¢ Is there a value specified for every parameter that a kinetindla uses?

e Can the input language of the simulation program representiodel kinetics?

e Does the model specification size exceed the capacity ofrindaion program?

e Can the simulation program execute in the given runtimerenment?

e Are the simulator control settings valid for the simulatimogram?

e Are the simulator control settings appropriate for the niade

¢ Do the dynamics of the model require tolerances beyond tthage¢he simulation program can provide?
¢ Do the dynamics of the model exceed the storage or physipabis of the simulation program?

¢ Does the model make physical assumptions that the simalptimgram violates?

give a pass or fail indication using the observed resporfsb& anodel. The term ‘failure’ for a model test indicates a
problem in the model rather than the model test.

Modelers select from several types of model tests accotditigeir needs. The problem requirements and sim-
ulation objectives from problem formulation are a significaource of model tests. Although the revised modeling
process does not detail the steps of problem formulatiengiscovery of model tests is another reason for modelers
to thoroughly consider the biological problem before gtgrinodeling work. The modeler needs to check each of
the originally stated requirements and objectives ag#iresproposed model. Additionally, biological modelersvdra
many model tests from the historically observed data thaeemental laboratories produce and publications curate.
Another significant source of model tests for use with modeluation is a collection of logically-designed ‘reality
checks’ that examine the model responses for reasonabledereality check subjects the model to experimental
conditions for which the modeler can intuitively predict@tcome.

Collectively, the model tests, the model test plan orgagizhe model tests, and the information required to
perform the model test plan form the experimental modelifigation, validation, and testing activities on the experi
mental model take up a significant portion of the model dgumlent time. Entering the problem definition once and
only once, and automating the testing process from prevtetetive cycles of the modeling process are important
techniques for reducing model development time. Furtheemepetitive procedures in model testing can lead to
errors by conditioning the modeler to omit model tests thetanfrequently, or seemingly always, correct in previous
trials. Modelers can miss important indicators of an ernait they introduced into the model if they do not perform
the test designed to detect that kind of model error. Modglols should automate the performance of model tests to
relieve the modeler of this responsibility and reduce thalper of errors that go undetected [21].

An additional factor that modeling software should considgrovision for independent execution of the model
test plan to prevent modeler bias in the testing proces®pleident verification and validation is the performance of
verification and validation activities by someone othentttee model developer. Arthur and Nance [14] emphatically
conclude that independent verification and validation igt/@mortant technique for mitigating risk in model develop-
ment. Additionally, it is reasonable to expect that incogtimg independence into the modeling process improves
model quality and operational correctness.

Verification and validation of the experimental model priityafocuses on checking that the experimental model
proposes a feasible test plan, thoroughly describes th@ls, and that the model tests comprehensively evaluate
the performance of the proposed model. Testing activitigbéevaluatestage check that the modeler configured the
experimental model correctly, not that the biological matkelf is correct. The revised modeling process does not
require.a-correct-biologicalmodel.before performing vesifion or validation activities. Table 3.7 shows a selectio
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of testing activities for thevaluatestage.

Table 3.7: Questions that testing activities can try to arguring theevaluatestage.

e Are there tests that evaluate the proposed model agairsdttalk known historical data?

e Are there tests that check the proposed model against thi@alty stated problem requirements?
e Are there tests that ensure that the proposed model meefgladl originally stated simulation objectivesp
¢ Does the executable model capture necessary model restiltg testing?

e Does each test have the information that a modeler needsdougon and analysis?

¢ Is there a defined procedure for transforming the model datpring evaluation?

e Is there a defined procedure for comparing the model outphtoecorded test data?
¢ |sthere a schedule such that performing model evaluatitntive test plan is feasible?

e Does the model test plan record all of the information thabaeter needs to run the tests so that somegne
independent of the original modeler can evaluate the model?

check
E—

Decision makers can still reject a model that passes the fi@sthe problem requirements and modeling objectives
stated during problem formulation. The tests that the nexqerformed on the experimental model may not have been
sufficient to thoroughly evaluate the compliance of the pegal model with respect to the problem requirements and
modeling objectives. Ideally, the testing process woulgctethis error of insufficient model testing in tegaluate
stage so that modeler does not waste time fine-tuning a mbdethe modeling tool is not evaluating adequately.
During theevaluateandcheck stages, modeling tools should flag gaps in the evaluaticordeso that the modeler
can review the evaluation process. However, automatedgesinnot detect whether the techniques that the modeler
applied during model evaluation are adequate to correddytify errors in the proposed model.

Excluding the presence of errors in the evaluation proadinere are two common reasons in the biological
domain for why decision makers reject a model that passed idl tests:

¢ the proposed model is insufficiently based on establishalddical processes,
e or the proposed model is not significantly better than artiegissimpler model.

Thecheckstage works to address both of these issues.

Comparing the proposed model against accepted modelsaigsent similar processes is useful as a test that
established biological processes underlay the proposel@imdhe modeler uses accepted models as a baseline for
determining how the proposed model should respond to sincpletrolled inputs. By generating results from the
accepted models, the modeler creates a plausible subdtituhistorical data and can compare the results with the
output of the proposed model under similar conditions. fréguently not possible to test the full fidelity of the
proposed model against existing, accepted models becaissmiely feasible to locate an existing model for each
of the problem requirements and modeling objectives. Thdeataw cannot give the accepted models inputs that are
outside the domain of their accreditation and expect togpreaneaningful results.

A collection of existing models for a system is useful whestitey whether the proposed model is a significant
improvement. The modeler should perform a statisticalyaisbf ranking and selection between the proposed model
and the existing models. Using the model tests for evalaagieen in the model test plan, the modeler scores each
of the models, and chooses a best model based upon the rafstiles evaluation. Ranking and selection does not
always-resultin-the identification.of a single best model.a&Wlkhis occurs, the output is a collection of best models
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with similar performance characteristics. Both the teghriof ranking and selection and the technique of generating
plausible data from accepted models test the proposed ragd#lst other models of biological systems [139].

Since the modeler drives tleleck stage primarily by exploring the results of previous modsification, vali-
dation, and testing activities, there are comparativelydatomated tests that modeling software can perform during
this stage. The automated tests focus on the past thorosg faremodel validation, verification, and testing and on
the materials that the modeler produced for use during mackaleditation. Table 3.8 shows a selection of testing
activities for thecheckstage.

Table 3.8: Questions that testing activities can try to arguring thecheckstage.

¢ Isthere arecord of the performance of the model tests fravipus stages?
e Isthere a record of the model transformations from prevatages?

e Has the reviewer of the model indicated that the model aabdpsatisfies the originally-stated problem
requirements?

e Has the reviewer of the model indicated that the model aetdypfulfills the originally-stated modeling
objectives?

accept
—_—

The acceptstage remains relatively unchanged from the original modgirocess. The preparations in thecept
stage correspond to the process of creating documentatprasentations that show that the model is sufficiently
accurate for its intended purpose [19]. This documentailags an important role in model acceptance. The stake-
holders of the model, the individuals and groups that hamddd the model or have vested interest in its construction,
will review the model and documentation to determine if thedeler successfully fulfilled the modeling objectives.
Other modelers can use this documentation to improve tmelexstanding of the model and make better use of the
developed model in their work.

It is important to emphasize that the intended purpose ofrthdel dictates the required accuracy of the model.
Models that are not operationally correct within the tohex@s set by the modeling problem description obviously can-
not fully satisfy their intended purpose. However, moded tire operationally correct but include details unneagss
for the modeling objectives may also fail the model accepggirocess. Overly-detailed models typically are more
expensive to produce, slower to execute, more fragile tagbs, and more complex to explain. Parsimony in building
models is a significant aid to model acceptance.

3.3.2 Secondary Stages of the Revised Modeling Process

The revised modeling process considerably augments thiaggshases in comparison with the original modeling
process. At every stage in the revised modeling processitbates or transforms a recorded model description, there
are tests that check that the model is still valid. Additibnahe results of model testing more specifically point to
causes of errors and direct the modeler to an appropriage &a correcting the error. In many cases, modelers spot
errors before they leave the stage in which they createdrtbe éreviously, the modeler would not detect the error
until performing model evaluation. This lowers the cost ofrecting the error by alleviating the need to do extensive
debugging to localize faults.

test
—

Thetest stages located throughout the revised modeling processsent verification, validation, and testing activ-
ities that take place concurrently with model developmé&ach primary stage description for the revised modeling
process.gave.examples.of procedures that exercise thesgwpwdel that modeling software can perform during test
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stages. Model tests operate concurrently with modelingus® and indicate that the modeler entered an error into the
modeling tool or that the modeling tool incorrectly transfied the model. If a modeler finds an error using a model
test and corrects the error before leaving that stage, treeartor does not propagate to other stages of the modeling
process. Immediate detection of errors reduces the timethdelers spend correcting errors and reduces unnecessary
switching between modeling tools.

Continuous verification is especially important when thedeier has experimental data for model evaluation with
limited quantity or quality. The modeler is less likely totelet errors in the model by automated means during model
evaluation when there is a limited pool of experimental détatead, the modeler must spend more time evaluating
the model by hand during each iteration of the modeling mec®y expending some effort to perform continuous
verification, the revised modeling process in return reddlce amount of work that the modeler expends performing
model evaluation without increasing the chance of modelreigoing undetected.

repair
_—

Therepair stage consists of activities that modelers perform aftedeheerification indicates that they introduced an
error while transforming the model. Model repair shouldwdess frequently with the revised modeling process than
with the original modeling process. Automating the modahsformation process eliminates many sources of model
error. Model tests immediately detect some of the remaiaingrs that modeling tools introduce while transforming
the model. Errors that a model test detects and that modeddrsfore leaving the stage in which they introduced the
error do not trigger the occurrence ofepair stage. Theepair stage in the revised modeling process includes the
activities of both theepair andrefit stages in the original modeling process. In Chapter 4, afeimgntation of the
revised modeling process once again separates thesdiestivi

redesign
_—

Theredesignstage consists of activities that parallel tiepair stage. Model redesign consists of the correction of
errors that the modeler detected during model validatiood®ers choose to redesign a model when they believe that
the basic conceptual model is correct but that they intredwrors while creating the communicative model. If the
conceptual model contains an error, then the modeler msistrt¢he model development process rather than trying to
tweak the implementation.

restart
—_

Restarting the model development process for a model teatttdeler has given up on has not changed from the
original modeling process. In the revised modeling procmsestart stage is an alternative that the modeler uses
when it is inevitable that decision makers will reject thedabduring accreditation. Choosing to restart the model
development process instead of spending the time preparidgdocumenting the model for accreditation is cost-
effective when successful accreditation is unlikely.

reject
E—

Thereject stage is a new counterpart to theceptstage in the original modeling process. A proposed modepean

all of the tests for model evaluation, and appear to fulfilbAthe problem requirements and modeling objectives, but
decision makers might still reject the model. The desaipiof thecheckandacceptstages discussed some reasons
why decision makers reject seemingly suitable biologicatiais.

Models that decision makers reject often need carefuligvi® make the model acceptable. Since model devel-
opment has significant cost, rejecting a valid model is aidenable expense. Therefore, decision makers tend not to
reject models unless they consider the model to have funat@tféaws that need correction. Theject stage leads
back to an examination, and potentially modification, ofé¢baceptual model. After decision makers reject a model,
the modeler must propose a new design for the biologicalgamc
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Chapter 4

JigCell Modeling Environment

JigCell is a suite of applications, programming librarisd utility programs that forms a computational environmen
for biological modeling. JigCell focuses on the productiexecution, and analysis of models of biochemical reaction
networks. The three applications in JigCell that corresitorthese modeling activities are the JigCell Model Builder
Run Manager, and Comparator. Figure 4.1 shows the user warlfi JigCell, which corresponds closely with
the revised modeling process that Section 3.3 described.r8ised modeling process introduced several forms of
biological and mathematical models, including the comroative, executable, and experimental model forms. Each
form of the model has a corresponding application in JigQdite the original and revised modeling processes, JigCell
does not attempt to deal with problem formulation.

The focus on biochemical reaction networks in JigCell dag®rclude the use of JigCell for other types of model-
ing. The basic units of models in JigCell are chemical reastrather than biochemical reaction networks. A modeler
working on a chemical reaction model could still make useig€éll even though there is no biological application
for the problem. However, the modeling terminology thaCif uses might not correspond to the modeling termi-
nology that a non-biological modeler would expect. Nonkiical modelers must mentally translate the modeling
terminology in JigCell to the terminology that their dom&ypically uses. During the development of JigCell, there
was no concerted effort to generalize the modeling termigypthat appears in the application user interfaces.

The goal of JigCell is to support users who are domain expertsology and other related fields but who do
not have significant experience in formal modeling. To tmd,eligCell acts both as a computational environment in
which biological modelers work and a research environmewtiich computer science researchers study how biolog-
ical modelers build models. The design of JigCell does natefrom any existing, general-purpose computational
environment. During the development of JigCell, biologshd biological modelers were able to access the software
for testing. In addition to reporting errors in the applioas, these early users of JigCell gave feedback about new
features that JigCell could implement and suggestionsdeeldpment priorities.

JigCell incorporates off-the-shelf components, such americal libraries, visualization tools, and communica-
tions protocols, when quality implementations of such comgnts exist. In many cases, this approach was not a
significant drawback to the development or use of JigCelle Treation of domain-specific support occupied the
majority of development work. The time spent building maaginfrastructure was small in comparison.

Primarily, the problems with using off-the-shelf compotsetame from the determination of whether a particular
component is a ‘quality implementation’. The use of off-gteelf components led to significant dependencies from
JigCell to these components. Failures and errors in therdige: components disrupted the development of JigCell.
Additionally, the off-the-shelf components were not sudfitly transparent to the end user. Some of the components
had difficult requirements for installation or use. Thespiieements affected the user experience of JigCell negjgtiv
JigCell was not able to directly remediate these problencailiee maintenance of the components was outside the
scope of the project. Eventually, JigCell discontinuedubke of these problematic components to improve the user
experience. Section 7.2 and the sections that describedjue digCell applications contain more details and histgri
notes about these experiences with incorporating offstiedf components into a computational environment.

The focus.of this.chapteris-to.introduce the JigCell modpéinvironment and detail some of the features that the
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Figure 4.1: User workflow that demonstrates the relatignbkitween the JigCell applications and the revised model-

ing process.
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JigCell applications provide in support of biological mtdg. The remainder of the chapter describes how JigCell
supports biological software developers and where Jig€alinenable to future extension. JigCell is a demonstration
that the revised modeling process of Section 3.3 is poswititaplement and provides a way of measuring the effec-
tiveness and impact of the revised modeling process on i@algical problems. Later chapters continue to examine
this issue by actually measuring how closely JigCell aligiith the revised modeling process and how effectively

JigCell supports biological modeling.

The present chapter starts with an overview of JigCell araimées how JigCell functions as a computational
environment. Section 4.1 describes two types of computatienvironments, modeling support environments and
problem-solving environments, and considers how well 8igS€upports the principles of both. Next, there are sep-
arate sections that discuss the Model Builder, Run Managet,Comparator applications in JigCell. Section 4.5
introduces the remaining pieces of JigCell, consistingnprily of the simulators, programming libraries that sup-
port the applications, and utility programs. Finally, $ect4.6 discusses several related applications for biokllgi
modeling that are not yet a part of JigCell.

Comparator
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4.1 Modeling Environments

Although the term ‘computational environment’ applies i@CEll in a generic sense, a more specific and applicable
term is ‘modeling support environment’. A modeling supportironment is an integrated computational environment
that enhances the productivity of the user for modeling amdlation tasks [27, 90]. Modeling support environments
provide several key modeling tools, including tools forafiéng models, translating models between different feym
executing models, and analyzing models. Note that the nagjplications of JigCell closely correspond to the basic
tools of a modeling support environment. JigCell does noluite a dedicated tool for model translation. Instead,
JigCell invisibly supplies this function of a modeling swppenvironment as part of the tool integration effort irmste

of making model translation an explicit tool that the useokes. When the modeler using JigCell specifies a product
that another tool in JigCell created, the current tool ti@es the model automatically.

The idea of building an integrated computational environtfi@ modeling and simulation is not new. Early exam-
ples of proposed modeling simulation environments incthdse by Henrikson [66] and Standridge and Walker [129].
In the area of biological modeling, the widespread intrdumoof modeling support environments is more recent. Sec-
tion 3.2 listed several modeling support environments fological modeling, most of which are less than five years
old. Many of the early tools for biological modeling were silation tools, with little or no capability for model cre-
ation or analysis. Numerical simulation is probably theaayEbiological modeling that is most amenable to computer
automation. Additionally, numerical simulation is alskelly the area of biological modeling for which an expert
modeler first requires computer automation.

An expert modeler can construct the regulating differémtipuations for a modestly sized model and, with dif-
ficulty, interpret the numerical output. However, finding @merical solution to a system of differential equations
rapidly becomes unfeasible even for an expert modeler witlodestly sized model. Moreover, efficiently computing
a solution to a system of differential equations requiresitbel mathematical and computational knowledge. It is
therefore natural that the early tools for biological mankgkentered on the simulation of models.

Several factors spurred the development of modeling stgmwironments for biological modeling. Using the
modeling perspectives dimensions of Balmer [26], the keyofs that spurred the development of modeling support
environments were the transitions

o from specialist computational modelers to end users,
e from small models to large models,
¢ and from simple decisions about well-defined problems toplerdecisions about ill-defined problems.

An ever-increasing number of biologists build biologicalaels. Although an expert modeler might successfully
build a model with only limited tool support, novice modeleequire more affordances and a better user experience.
Most standalone simulation programs only accept modelsdariarm of a system of differential-algebraic equations.
Modelers often start with only a sketch of a biochemical tieametwork. As Section 3.1 described, novice modelers
particularly benefit from computer assistance in the tatimsh of models. Modeling tools require integration to soipp
the automatic translation of models between various forms.

As models became larger, the process of building and defthimge models became more difficult. Large models
have complex interactions in their definition and the diffies of working with such models generally scale non-
linearly-Section.2:4-described.some of these problemscéleéhe need for model creation tools increased.
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Finally, increasing computational assistance changeantbst-pressing problems for biological modelers. The
problem that numerical integrators solve is ‘What is a sotuvector for this set of differential equations?’. A math-
ematician can construct a precise definition of this probfemmany biological models. After improvements in
computation reasonably solved the problem of finding a smlutector for this class of models, the next clear prob-
lem to solve is ‘Does this solution vector reasonably appnaxe the experimental observations?’. The new problem
of judging the quality of a solution is more ambiguous anditei® the need for model analysis.

Problem-solving environments

Problem-solving environments are another specializaifdhe concept of a computational environment [117]. This
dissertation considers problem-solving environmentsrevtee identified problem is the construction, execution, an
analysis of a biological model. Problem-solving enviromtseprovide integrated access to a selected collection of
tools [115, 137], much like a modeling support environmétawever, a problem-solving environment goes further
by encompassing several computational aspects that atypadeling support environment lacks.

Problem-solving environments often focus on problems witegrated and interdisciplinary components. For
this reason, problem-solving environments must often igpee for multiple classes of domain users and provide
separate tools for each of these classes. In contrast, alimgpdepport environment typically incorporates toolsttha
specialize to a single, particular class of domain useis.dften easier to customize a modeling support environment
by changing the selection of tools to suit the needs of awiddal user than to create a modeling support environment
that meets the needs of disparate classes of users.

Another difference between problem-solving environmamis the typical modeling support environment is that
problem-solving environments often contain greater supjoo remote, distributed, and supercomputing resources.
An increasing number of scientific computing problems,tdahg biological modeling, require resources in excess
of those available with a typical personal computer. Pnob$®lving environments recognize this need for high-
performance computing resources by integrating easy andparent access to external computational resources.

JigCell is not yet a problem-solving environment. JigCalhhily specializes to the domain of biological mod-
eling. In particular, JigCell uses terminology that bidkig find comfortable but that other domain experts, such as
chemists or physicists, may not recognize. Although Jig@eVliously attempted to provide access to remote compu-
tational resources, the current applications in JigCelkgelly do not access computational resources apart froseth
available on the local machine of the end user. Users of Jig€dorm tasks that generally do not require extensive
computational resources.

JigCell will require greater access to computational resealin the future. Parameter estimation, which Sec-
tion 4.6 describes as an alternative to parameter twiddiggesource-intensive. JigCell must provide access to
high-performance computing resources before parametara®n becomes feasible for many biological problems.

4.2 JigCell Model Builder

The JigCell Model Builder is responsible for creating andied the communicative model. Marc Vass created the
original JigCell Model Builder in 2001 [135]; Nicholas Alkeand Ranjit Randhawa created a new program with the
same name in 2005. As in the revised modeling process, thencoimative model is a translation of the conceptual
model that the modeler has in mind. Hereafter, this dissent@ommonly uses the term ‘model’ synonymously with
the communicative models that the Model Builder createse B&sic elements of models in JigCell are chemical
reactions, which the Model Builder presents in a mannerairto the chemical reactions in Chapter 2.

The Model Builder records models using the Systems BiologyKdp Language (SBML) [71, 72]. SBML is
rapidly becoming a standardized interchange language gthensystems biology community. Currently, the Model
Builder supports reading and writing models with SBML LegeVersion 1 [54]. However, the Model Builder does
not know about the syntactic or semantic rules of SBML. ladtehe Model Builder uses an SBML parsing library
that can convert between SBML and an object-oriented reptason of a model. Section 4.5 describes this SBML
parsing library in more detail. The choice of SBML for reprang models influences other portions of the Model
Bulilder-Inside the-Model.Builder;the storage of the modékrcts the structures that SBML uses to organize a model.
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The Model Builder has multiple user interface screens, orees for each major component of the model, that appear
in separate tab windows. These components correspond hodtel structures of SBML.

Chemical reactions

User interface screens in the Model Builder use a spreatishet@aphor to present information. Figure 4.2 shows

a collection of chemical reactions in the ‘Reactions’ speteet of the JigCell Model Builder. The spreadsheet

interface organizes information in a straightforward memrFor example, in the ‘Reactions’ spreadsheet, each row
of the spreadsheet represents a distinct chemical reacfioese chemical reactions are all irreversible. The Model

Builder requires that a modeler enter a reversible chemézaltion as two separation reactions. The other tabs in the
Model Builder user interface similarly place one distiniemeent of the model on each row of their spreadsheet.

Figure 4.2: Chemical reactions in the JigCell Model Builttem theXenopus laevismodel in Chapter 3.

£ C:\Program Files\JigCell\frogegg\frogegg.sbml E]@
File Edit Help
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| ame | Reaction | Type | Equation | Farameters & Modifiers |_Fast | otes
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MPF activation Mi-= Ma Mass Action (kfMiy kl=ke [
Cde25 inactivation Ca-» Ci Michaglis-Mertern (k1 Ca MW +Ca)  (M1=1.0.01=krcr_ki=@eppp_tve) | [
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[

[

Each column in the ‘Reactions’ spreadsheet representsa pfanformation about the chemical reactions. For
example, the first column in the chemical reaction spreagtstentains a descriptive name for the reaction and the
second column in the spreadsheet contains the chemicaioeacuation. The chemical reaction kinetic formula is
split among the ‘Type’, ‘Equation’, and ‘Parameters & Moeif’ columns.

To use a previously defined kinetic formula, the modeler sksdhe name of that kinetic formula in the ‘Type’
column. An equation for the general form of that kinetic fatenappears in the ‘Equation’ column, and the modeler
can specify values for the parameters in the equation uem{Parameters & Modifiers’ column. The Model Builder
automatically defines the Michaelis-Menten kinetic formmahd mass action kinetic formulas for any number of re-
actants. The modeler can define additional kinetic formidasse in the Model Builder by going to the ‘Functions’
spreadsheet, entering an equation for the kinetic fornaumd,giving that kinetic formula a name.

If the modeler does not want to use a previously defined ldrietmula, then the modeler can specify an arbitrary
equation for the kinetic formula of a chemical reaction. Titee an arbitrary equation, the modeler chooses the local
rate law option in the ‘Type’ column instead of specifyingeoof the existing kinetic formulas. After the modeler
specifies that the rate law is a local rate law, the ‘Equatimiimn becomes editable for that chemical reaction and
the modeler can type an arbitrary equation for the kinetimfda. Giving a local rate law for a chemical reaction
disables the ‘Parameters & Modifiers’ column, which this moet for specifying the kinetic formula does not need.

Currently, reuse of previously defined kinetic formulasligtzat the Model Builder supports in terms of model
reuse. The SBML standardization effort has not yet defingchaechanism for including sub-models as either black-
box or white-box components inside of a larger model. The d&iiilder would have to overcome several difficult,
technical issues to support a more powerful mechanism fatetnmomposition. In particular, modelers do not agree
on the names to provide for elements of the model, such asichkereactions and species. Unless there is some
standardization for the names of model elements, the Mod#t& would require a tedious ‘identification’ phase
where the modeler must equate the elements of separatesrinydaehnd.

The other tabs in the Model Builder user interface similgrfgsent a piece of the model using a spreadsheet
metaphor. As the previous text mentioned, the ‘Functiopgadsheet is where the modeler defines and names equa-
tions for use in other parts of the model. The ‘Units’ spréesdt allows the modeler to define units of measurement
that-apply-to-the-numericalvalues that the modeler entetsérModel Builder. Figure 4.3 shows the ‘Equations’
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spreadsheet that summarizes in a single screen the diftdramd algebraic equations from throughoutthe model. The
Model Builder constructs this summary system of differargilgebraic equations using the process that Section 2.4
described. Although there is no guarantee that the simuliates the same set of differential-algebraic equationsiwhe
executing the model, the modeler can expect that the siorulaes an equivalent system.

Figure 4.3: Differential and algebraic equations in theCglj Model Builder for theXenopus laevisnodel in Chap-
ter 3.

< C:\Program Files\JigCell\frogegg\frogegg.sbml =<
File Edit Help
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4.2.1 Specifying Model Variables

The ‘Compartments’ spreadsheet organizes the cellulapaaments in the model. Each compartment has an initial
size, unit of measurement, and topological propertied) siscthe dimension of the enclosed space and a reference
to the enclosing compartment. In every new model, the ModdtBr creates by default a single compartment with
unit volume named ‘Cell'. Compartments are the only form pditsal organization in SBML and consequently the
Model Builder. The Model Builder cannot represent modedd ttontain spatially dependent equations. Moreover, the
number, dimensionality, and topology of compartments ohchange during simulation. Although several individuals
proposed schemes for the inclusion of spatial modeling, BB not to date accepted these proposals.

Note that entering an initial size for a compartment is amlo If the modeler chooses not to give an initial size
for a compartment in the model, it is still possible to defindratial size for that compartment later using the Run
Manager. The next section describes the Run Manager inl.ddtavever, if the modeler does not give an initial size
for a compartment in both the Model Builder or Run Managentthe model is not simulatable.

The ‘Species’ and ‘Parameters’ spreadsheets allow the lerobedefine chemical species and kinetic rate con-
stants. The modeler typically does not need to add addit@dreamical species or parameters to the model. The Model
Builder automatically creates appropriate chemical sseand parameters from the context when the modeler enters
a chemical reaction equation or kinetic formula. Figure ghdws the layout of the ‘Parameters’ spreadsheet in the
Model Builder. The tabs for editing species and compartsiarg similar to Figure 4.4 but have more options due to
the greater detail with which SBML describes these modehelws.

Figure 4.4: Parameters in the JigCell Model Builder for Xanopus laevimodel in Chapter 3.
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SBML requires that every chemical species reside insideestompartment of the model. By default, the Model
Builder places newly declared chemical species inside@k# ‘compartment, if that compartment exists. The modeler
later can reorganize the model by changing the compartroeatédhemical species.

As with compartments, chemical species and parametersamairgtial value, units of measurement, and topo-
logical properties. Additionally, the modeler does notd&v give initial values for a chemical species or parameter
in the model, but can defer that decision until using the Ruandfer. When a conservation relation eliminates a
chemical species, as Section 2.4.2 described, the Mod&léilocks the modeler from entering an initial value for
that chemical species to prevent the construction of amisistent model.

4.2.2 Controlling Model Variables

The ‘Rules’ spreadsheet allows the modeler to specify whfféal and algebraic constraints. These constraints are
separate from the biochemical reaction network and the @ameactions do not reflect the constraints. SBML
supports three types of rule-based constraints. Diffeakniles allow the modeler to specify a differential eqaati

for a chemical species, parameter, or compartment sizeigireent rules allow the modeler to directly specify an
explicit function for the value of a chemical species, pagten or compartment size.

The most complicated type of rule that SBML supports is tlgelataic rule. Algebraic rules allow the modeler
to specify an implicit function for the value of a chemicaésjes, parameter, or compartment size. Since there is no
analytical method for solving the general implicit funetfothat a modeler can enter, the numerical integrator must
approximate a solution for the algebraic rule starting feaguessed point. Unlike a differential or assignment rule,
an algebraic rule does not specify which variable the rufinds. Instead, the numerical integrator must infer an
appropriate variable for the rule.

The Model Builder currently uses algebraic rules to spatié/conservation relations in the model. It seems likely
that this approach will require modification in the futurdth®ugh algebraic rules are more general than assignment
rules, expressing conservation relations does not rethisgpower. Numerical integrators are more likely to suppor
the use of assignment rules than algebraic rules, which stbahexpressing conservation relations using assignment
rules is the more portable approach. Figure 4.5 shows thiesRspreadsheet of the Model Builder, including several
algebraic rules that are due to conservation relations. ribt difficult to rewrite each of these conservation retzio
using assignment rules instead of algebraic rules.

Figure 4.5: Algebraic and assignment rules in the JigCeli®d@uilder for theXenopus laevimodel in Chapter 3.
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The ‘Conservation Relations’ spreadsheet is where the faodan view the conservation relations that the Model
Builder detected in the biochemical reaction network. Kiced, the modeler can propose a new set of conservation
relations to use instead. The Model Builder uses the algorfor calculating conservation relations that Section2.4
described. Like many of the computations described in thisien, the SBML library that the Model Builder rests
upon contains the implementation of the algorithm thatmeitges conservation relation. When the modeler proposes
an alternative set of conservation relations, the Modeld@uichecks this set using another algorithm located in the
SBML library. Section 4.5 describes in more detail the aithpon for validating a set of conservation relations that the
modeler supplies. Additionally, the modeler can choosdfarént dependent species whose differential equation the
conservationrelation.eliminates-and a different nameHemarameter that represents the conserved total.
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Finally, the ‘Events’ spreadsheet allows the modeler taigpeliscrete events that occur during the numerical
integration process. A discrete event consists of a ‘triggadition’, a boolean expression, and a list of assignment
that take place when the trigger condition becomes true. gsigament modifies the value of a model variable
according to a formula that the modeler specifies. Additigna discrete event can have a time delay, which is the
amount of time that the numerical integrator should waierafthe discrete event occurs before applying the event
assignments. The numerical integrator applies the asggtefior a delayed event at the specified time regardless of
the behavior of the continuous model or execution of evérasdccur in the meantime.

Many numerical integrators do not support discrete evestatbse it is difficult to detect when the trigger condition
occurs. A trigger condition is a function of the model val&band evaluates to a boolean expression. The event
occurs at the instant when the trigger condition changes fiadse to true. There is no analogous event when the
trigger condition changes from true to false and no eventocaor at the start of simulation. A simulation program
must convert the trigger condition to a numerical expresaitd use a root-finding procedure to detect when the trigger
condition occurs. After the numerical integrator appliesré assignments, it must destroy any recorded evaluation
history. The application of event assignments causes amtiseious change to the model and invalidates any local
functional approximation that the numerical integrat@ated from previous time steps.

4.3 JigCell Run Manager

The JigCell Run Manager is responsible for creating andrefibe executable model. Marc Vass created the original
JigCell Run Manager in 2001 [135]; Nicholas Allen createéa program with the same name in 2005. An executable
model consists of a collection of experimental configuraior ‘runs’, that the Run Manager can apply to an existing
model. The term experimental configuration comes from theroon use of a modeler wanting to modify a model to
replicate an existing laboratory experiment. Howeverytbed ‘experiment’ in the term ‘experimental configuration’
can cause confusion as JigCell works with many other aspéetsperiments, such as experimental data. Therefore,
the Run Manager uses the term ‘run’ as a replacement.

As Section 3.3 described for an executable model, the definitf a run includes a reference to a model and
information for constructing the execution environmenaaofumerical integrator. The Run Manager uses the commu-
nicative models that the Model Builder previously created stored in SBML. As SBML is a standardized language,
the Run Manager can also use model files that other modehgditiftware tools create.

The Simulator API, a generic interface for communicatinghvdimulation programs that generate time-course
data, hides the execution environment from the numericagnator. The Run Manager records only an identifying
token for the simulation program and the control settinggtie numerical integrator that the modeler desires to use
with the model. Section 4.5 describes the Simulator API imemttetail.

Like the Model Builder, the Run Manager is not directly resgible for reading and writing the data that the
modeler edits. There is a standalone library for readingingr, manipulating, and executing runs, which Section 4.5
describes. The Run Manager produces two data files for egitalaun file. A basal file contains a collection of
values for chemical species, parameters, and compartizestthat override the corresponding values in the model.
A run file defines an ensemble of runs in terms of changes tipdy &pthe settings in the basal file. Since the run file
contains most of the information for a run, it is common tosethe term ‘run file’ to mean the entire collection of
information that makes up an ensemble of runs.

Ensemble of runs

The Run Manager uses a spreadsheet metaphor to organizesidaitar to the organization of data in the Model
Builder. Figure 4.6 shows the main ‘Runs’ tab of the Run Marag/hich organizes the ensemble of runs. There is
a field at the top of the ‘Runs’ tab for the modeler to specify@dei file. The Run Manager uses a single model for
all of the runs in a run file. The run file does not duplicate ttoeage of a model. There is a reference to a model file
inside the run file, and the Run Manager retrieves the model the specified file each time there is a need for the
model definition.
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Figure 4.6: Ensemble of runs in the JigCell Run Manager feX#nopus laevismodel in Chapter 3.
< JigCell Run Manager E]@

File Edit
Runs r Basal i r Simulator

Model file: ‘frngeggifmgegg shml |

Marne Parents Changes Sirmulator Settings Description
.2 TotalCyelin=0.2, Dilution=2.086 | Moore Timelags for MPF activation -
C.25 TotalCyclin=0.25, Dilution=2.096 . Moore Timelags for MPF activation
.3 TotalCyelin=0.3, Dilution=2.086 | Maore Timelags for MPF activation
.5 TotalCyclin=0 &, Dilution=2 036 . Moore Timelags for MPF activation
Threshald? L. Moore Thresholds for MPF activation and inactivation.
Threshold2 +. Moore Thresholds for MPF activation and inactivation.
Kurnagail Wa=1,Wi=1,Wa=0, Ci=0, Ca=1, Mi=0 Kurnagai&Durnphy 1998 Fig 4h Timecourse data for MPF activation during mphase
|||Kumagai2 Kumagai&Dumphy 1995 Fig 4h Timecourse data for MPF activation during interphase
|{[Kumagaiz Wa=1,Wi=1,Wa=0, Ci=0, Ca=1, Mi=0 Kurnagai&Durnphy 1998 Fig 3¢ Timecourse data for MPF inactivation during mphase
|{[Kumagaid Kurnagai&Durnphy 1995 Fig 3 Timecourse data for MPF inactivation during interphase |

At the bottom of the ‘Runs’ tab, there is the ensemble of rurit) one run on each line of the spreadsheet. Each
run has a name, description, and a set of changes. A changmaaslification to the value of one of the chemical
species, parameters, or compartment sizes in the modekethke Model Builder, which only supports initializing
model variables with numbers, the modeler can specify aatamufor the changes in the Run Manager. The equation
can use any of the variables in the model, and the numeritedriator evaluates the equation with respect to the
settings in the basal file before simulation.

The modeler can then organize runs into a hierarchy usingdnent system. A run inherits changes from its
parent runs. A run has multiple parents in an ordered list,eath parent applies its changes in that order. Thus, if
the hierarchy contains multiple runs that change a padiaulodel variable, the last change to the model variable is
the one that the numerical integrator receives. The ruriepjté changes after all of its parent changes.

The hierarchy of runs allows the modeler to describe inaecé. There are many situations where the modeler can
use inheritance to avoid redundantly inputting informatidbout the experimental conditions for a run. For example,
a common task for a run file is to describe a collection of musérains for a particular model. The model by itself
represents the wildtype, or normal, version of the organ&mutant strain changes model variables according to the
addition, deletion, or modification of various genes. Thedeler may have many runs that represent mutant strains
that change a single gene. Then, the modeler wants to createthat represents a mutant strain that changes two
genes at the same time. If both of the single gene changesalvane then the modeler can simply create a new run
that inherits from the appropriate two runs.

Using inheritance reduces the likelihood of having twofetifig definitions of the same experimental condition by
eliminating the need for the modeler to enter a particulpeexmental condition more than once. Additionally, when
the modeler needs to modify one of the experimental conditithose modifications propagate down to all of the runs
that inherit that change. This makes updating a run file witeva model or new experimental conditions easier. Later,
this section shows how the modeler chooses the simulatmgram and default simulator control settings.

The final column in the ‘Runs’ spreadsheet of the Run Managthie ‘Simulator Settings’ column. The ‘Simulator
Settings’ column allows the modeler to specify changes ¢octintrol settings of the numerical integrator that apply
only to that particular run. However, the modeler cannotgpealifferent simulation programs for different runs in a
run file. All of the runs in a run file must use the same numeiigagrator.

Basal settings

The ‘Basal Settings’ tab is where the modeler enters a defalle for each chemical species, parameter, and com-
partment size in the model. Unlike the experimental coaditthanges in a run, a basal setting is a numeric value
rather than a formula. Preventing the use of formulas inlbsettings simplifies the evaluation of changes in a run
by the simulation program. Moreover, restricting the basdtings to numeric values matches the restriction when
initializing model variables in SBML. Thus, it is possiblegubstitute basal settings back into an SBML file.
Figure 4.7 shows the basal settings for the run file of Figuée 4t the top of the tab there is a field for the

modeler to specify where the Run Manager should store thed batings. Modelers typically have many basal files
that-they-can-associate - with-the-model. For example, theepsoof parameter twiddling is likely to generate many
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different basal guesses before the modeler is happy withthewnodel performs. If the run file directly stored the
basal settings, then the modeler would have to edit the rieVitry time they made a new guess for the basal settings.
Since it is likely that the modeler will later discover thaetnew guess for the model variables is not very good, the
modeler will then want to revert to a previous guess for thelehgariables.

Figure 4.7: Basal settings for the chemical species, passjeand compartment sizes in the JigCell Run Manager
for the Xenopus laevisodel in Chapter 3.
ngigCell Run Manager E]@

File Edit
Runs | Basal Settings rSimuIatur Settings

Basal file: |frngegg!fmgegg has |

Marme Value Tipe Description
vepp_ 1Mal initialAmount
WE_ [REIR] initialAmount
ve 1.0 parameter
krmr 1.0 parameter
Icde25Total_ Mar initial&mnount
|||\rwppp7 Makl initialArmount
ke 0.1 parameter
| 1.0 initialA&mount
ke Mar initial&mnount
|[[TatalCyelin 1.0 parameter

»

4

Reverting to a previous guess seems to require that the erageake backup copies of the run file, duplicating
the ensemble of runs in each copy. There is now a great chaactht modeler will inadvertently edit the definition
of a run without making the same change to every copy of thdileinThis causes a difficult-to-detect inconsistency.
Having the run file reference an external basal set file sahisproblem. The modeler can switch between multiple
collections of basal settings without modifying the ensknaf runs.

The Run Manager devotes the remainder of the ‘Basal Settiaig$o the editing of basal settings. Initially, the
Run Manager does not know what variables the model contahesmodeler first must either specify an existing basal
set file for the Run Manager to use or import a collection ofbasttings from the model.

Since few programs currently exist that can create baséilegtand creating a basal set file manually is tedious,
modelers typically import the basal settings from the modttalporting the basal settings from the model copies the
initial conditions of chemical species, the numeric valolgsarameters, and the sizes of compartments from the SBML
file that the Run Manager has open. There is some ambiguity WieRun Manager imports the initial conditions
of chemical species from an SBML file. SBML allows the modetespecify an initial condition for a chemical
species in terms of either concentration or amount of substalf the modeler did not include an initial condition
for a chemical species in the SBML file, then the Run Managenctadetermine which specification the modeler
intends to use. Therefore, the Run Manager allows the mottetistinguish in the basal settings whether a value for
a chemical species is an amount or concentration.

Simulator control settings

The ‘Simulator Settings’ tab, where the modeler configunescontrol settings of the simulation program, is the final
tab in the Run Manager interface. Unlike the other parts efrtm file, simulator control settings are independent
of the contents of the model. The modeler can select any atouthat the Run Manager has access to through
the Simulator API. Figure 4.8 shows the default simulatantoa settings when the modeler selects the XPPAUT
simulator. Section 4.5 describes both the XPPAUT simulataf the Simulator API in detail. JigCell includes the
XPPAUT simulator in every installation so the Run Manag®rmgls has access to at least one simulation program.
After the modeler selects a simulation program, the Run Manases the Simulator API to query the simulator
about its known control settings. Each control setting haarae, type, default value, and other information. Although
the current Run Manager only uses the name and default vaiuge dimulator control setting in the user interface,
future versions of the Run Manager could better make useeofrtftormation that comes back from the Simulator
API. For example, the Run Manager could use the type of a sitmutontrol setting to build a structured editor that
prevents the modeler from entering impermissible valuesirt) a structured editor would allow the Run Manager to
detect-that-a-setting-that.the.moedeler chose is invalid beftiempting to execute a run.
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Figure 4.8: Default settings for the XPPAUT simulator in fligCell Run Manager.
< JigCell Run Manager E]@

File Edit
Runs | Basal Settings SimulaturSEttings|

simulator: [xpp I~

Mame Setting Description
total 50

it 0.1
rmeth Stiff
rnaxstor 50000

to 0.0
|[fmirnp 1
hound 10000
toler 1.0E-4

The Run Manager does not standardize the names of simulandrot settings. XPPAUT calls the simulator
control setting that indicates the starting time for sintiola ‘t0’ and calls the corresponding setting for the ending
time of simulation ‘total’. Another simulation program maystead want to use the names ‘tstart’ and ‘tend’ for
these simulator control settings. The lack of standardireties makes the task of switching a run file from one
simulation program to another more difficult. However, shihg between different simulation programs is easier in
the current version of the Run Manager than past versionghwiquired that the modeler specify the simulation
program individually for each run. When each run individgalhooses a simulation program, the modeler must
carefully and tediously examine the run file after making ange to ensure that they configured the runs correctly.

4.4 JigCell Comparator

The most complicated JigCell application is the Comparaitre Comparator is an integrated set of tools for per-
forming quantitative analyses on a collection of data ddtsdelers use the Comparator to perform model testing and
evaluation. Tests in the Comparator are assertions abowd@lmr comparisons between model performance and
experimental data. A Comparator test performs either meal@ation, evaluating the operational accuracy of the
model, or model verification, checking the accuracy withakhother tools transform the model. The modeler must
provide three types of information about the desired comparto create a model test in the Comparator:

e a benchmark value, typically laboratory or experimentaéhdthat the Comparator uses to compare against the
model output,

e adata transformation process, the Comparator refersg@sha ‘transform’, that extracts information from the
model output,

¢ and an objective function that measures the distance battheeexperimental data and the output of the trans-
form.

The output of a transform has the same structural formaiasxperimental data. For example, if the experimental
datais in the form of a time series, then the result of thesficam must also have the form of a time series. The result of
an objective function when the experimental data and tcansbutput are in perfect agreement is a distance of zero.
Successively worse matches between the experimental ddt&ransform output have correspondingly increasing
scores. There is no upper bound to an objective functioresddre following section describes each of these parts of
a comparison in more detail.

Like the Model Builder and Run Manager, the Comparator @sithe user interface into a number of screens
that correspond to the different parts of a comparison. Aapsheet representation of that part of the comparison
dominates each screen in the Comparator. However, the Gatopdivides some elements of the comparison among
several tabs. For example, the process of defining the tramsffor a comparison uses one tab to specify the trans-
forms and another tab to link transforms with experimenghd This approach introduces navigational issues, the
modeler must engage more user interface areas to accorafhsik, but reduces the amount of information on each
screen to a manageable amount.
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4.4.1 Configuring a Comparison

Before modelers begin working with the Comparator, they firsst identify the kinds of available experimental data.
JigCell does not provide an application for archiving anarsking through scientific literature. This step is part of
the process that the revised modeling process identifiescdden formulation. As mentioned earlier, the revised
modeling process and JigCell deal with model building dti¢is subsequent to problem formulation.

Modelers can start working with the Comparator after thentdy the kinds of experimental data that the model
tests use. The first tab that the modeler goes to is the ‘Exeet tab where all experimental data entry takes place.
Note that experimental data entry does not require a modhel.nfodeler can begin entering experimental data before
even starting the model. Choosing the experimental datarat®| tests early ensures that the modeler is building a
model to pass the tests rather than finding tests to justEyrtbdel.

Figure 4.9 shows the experimental data entry tab in the Ceoatgra Like the other JigCell applications, the
Comparator organizes experimental data in a spreadshest.rBw in the spreadsheet indicates a separate model test.
The ‘Name’ and ‘Comment’ columns in the experimental dateagsheet are self-explanatory.

Figure 4.9: Experimental data in the JigCell Comparatamftbe Xenopus laevisodel in Chapter 3.
' JigCell Comparator E]@

Comparator  File  Edit  Tools

CaflEs: 885D 0oy El

EXDEI’”'V'VEI'Vt Transform | Objective | Transform Editor | Transform Debugger | Objective Editor | Compare™2

Mame Experiment Yalue Walue Type Camment

MPF mphase activation L ({2, 0.75), (4, 0.51), (8, 0.21)) Time-L Series Kumagai & Dunphy 1995 Fig 4b -~
MPF interphase activation L ({2, 1.0, (4, 1.0, (8, 0.85)) Time-L Series Kumagai & Dunphy 1995 Fig 4b

MPF mphase inactivation L2 ({4, 0.0), (16, 0.00) Time-LZ Series Kumagai & Dunphy 1995 Fig 3c

MPF interphase inactivation L2 (fz, 1.0, (4, 1,00, {16, 1.00) Time-L2 Series Kumagai & Dunphy 1995 Fig 3c

CdcZ5 activation Ca ((1.25, 0.8), (2.5, 0.9), {5, 1.0, (10, 1.0%) Time-Ca Seties Kumagai & Dunphy 1992 Fig 10

Zdc25 inactivation Ca ({5, 0.75), {10, 0.5), (20, 0.1), (40, 0.00) Time-Ca Series Kumagai & Dunphy 1992 Fig 10

‘Weel inactivation Wa ({2, 0.5), (5, 0.0, {7, 0.0), {10, 0.0%) Time-Wa Series Tang Coleman Dunphy 1993 Fig 2

Weel ackivation Wa (7.5, 0.5), (15, 1.0)) Time-\'a Series Tang Coleman Dunphy 1993 Fig 2

MPF activationfinactivation (0,18, 0.06) MPF thresholds ], Moore

TotalCyclin time lags (0.2, 45), (0,25, 400, (0.3, 300, (0.5, 200) TotalCyelin-Time Series . Moore P
JigCell Comparator 6.0.5 {Unofficial) :]

The ‘Experiment Value’ column is a textual representatibthe experimental data for a particular model test.
Experimental data in the Comparator uses a ‘list of listshfat, which Section 4.5 describes in more detail. Each
piece of information in the Comparator is either a scalanealr a list. Lists are indexed collections of scalar values
and lists. Thus, lists can nest inside one another to anyhaemt duplicate most common ways of organizing data.

The experimental data in Figure 4.9 are primarily time seriA time series is a list of measurements taken at
particular times. Each measurement is itself a list, with finst entry of the list the time of measurement. The
remaining entries are the values of particular speciesdmthdel at that time. Time-series data is a built-in data type
that the Comparator understands automatically. The Camgracan validate that a given input is a time series, and
the Comparator can also display popup editors that dispieg-$eries data in a structured format.

The ‘Value Type’ column is how the modeler communicates tkpeeted type of the experimental data to the
Comparator. Clearly, the modeler needs an extensible setloé types. The Comparator can represent experimental
data that use custom data types. The modeler can progracathesidd new data types that provide the same features
for editing and validation as the built-in data types. Smt6.2.1 gives an example of adding a new data type for a real
biological problem.

After entering the experimental data for model tests, thelefer then needs to devise a data transformation pro-
cedure that produces the equivalent information from a ho#lighough this sounds like a complicated process, in
many cases the modeler can use a simple data transformadicedure. For example, simulation programs typically
generate time-series data as output. If the experimentaisia time series, then the data transformation procedure i
often to return the simulator output either without changafter applying a filter that eliminates some model variable
or time points from the output.

The data transformation procedure for thenopus laevimodel is an example of a simple transform.

1. Execute.a-fun.that.the.modeler previously created witliRilme Manager.
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2. Filter all but one chemical species out of the time-coorgput according to which species the experimentalist
measured in the laboratory.

There are two individual steps, ‘primitive transforms’ tims data transformation process. The example in Chapter 6
includes a complicated transform, built from many priméttvansforms, that significantly processes the model output
before producing results in a form comparable to the expartal data.

The modeler defines the individual steps of transforms inThensform Editor’ tab and connects transforms to
model tests in the ‘Transform’ tab. Figure 4.10 shows theneation between transforms and the experimental data
in Figure 4.9. The individual steps of the transforms in #xample are of the same simple form that this section
described previously. Each model test has a transform wborit is of the same form as the experimental data.
Figure 4.10 shows the ‘Transform’ spreadsheet after timstoams completed execution. Thus, the ‘Transform Value’
column contains the output of each transform.

Figure 4.10: Experimental model setup in the JigCell Coratmarfrom theXenopus laevimodel in Chapter 3.

' JigCell Comparator E]@

Comparator  File Edit Run  Tools
- iE g
CaflRe s8hEN O

Experiment |: Transform:| Objective | Transform Editor | Transform Debugger | Ohjective Editor | Compare~2

Mame Experiment Yalue TransForm TransfFarm Value Value Type Cormment
MPF mphase activation L (2, 0.75), (4, 0.51), (8, 0.21))  |MPF mphase activation L (0.0, 1.0), (0.1, 0.98198569), ...|Time-L Series Kumagai 8 Dunphy 1995 Fig 4b -~
MPF interphase activation L (2, 1.0%, (4, 1.0, (8, 0.85)) MPF interphase activation L (0.0, 1.0, (0.1, 0.99835104), ... Time-L Series Kumagai & Dunphy 1995 Fig 4b 1
MPF mphase inactivation L2 (4, 0.0, (16, 0.0 MPF mphase inactivation L2 (0.0, 0.0), (0.1, 9.9476318E-5... |Time-L2 Series Kumnagai B Dunphy 1995 Fig 3c
MPF interphase inactivation L2 iz, 1.0, (4, 1,00, (16, 1.0 MPF interphase inackivation L2 (0.0, 0,00, (0.1, 0.073460095), ., |Time-LZ Series Kumagai & Dunphy 1995 Fig 3c
CdcZ5 activation Ca §(1.25, 0.8), (2.5, 0.9), (5, 1.0... [Cdc25 activation Ca (0.0, 0.0, (0.1, 0.037473068)... Time-Ca Series Kumagai & Dunphy 1992 Fig 10
(Cdc25 inactivation Ca (5, 0.75), (10, 0.5), (20, 0.1}, ...|Cdc25 inactivation Ca ((0.0, 1.0), (0.1, 0.99096221), ... Time-Ca Series Kumagai 8 Dunphy 1992 Fig 10
‘Weel inactivation Wa (2, 0.5y, (5, 0,0), (7, 0.0), (10.., |Weel inactivation Wa (0.0, 1,00, (0.1, 0,96059936), ... Time-Wa Series Tang Coleman Dunphy 1993 Fig 2
“Weel ackivation Wa (7.5, 0.5), (15, 1.00) ‘Weel activation Wa (0.0, 0.0), (0.1, 0.011129268)... Time-'Wa Series Tang Coleman Dunphy 1993 Fig 2
MPF activationfinactivation k0,18, 0.06) Mo Yalue Mo Yalue MPF thresholds 1, Moore
TotalCyclin time lags ((0.2, 453, (0,25, 40), (0.3, 30)... Mo Yalue Mo Yalue TotalCyclin-Time Seties 3. Moore P
JigCell Comparator 6.0.5 {Unofficial) :]

Note that the time-series output of the transform does netgdt to match the times in the experimental data time
series. Instead, the transform provides measurementsp@iken at regular intervals. The objective function fos thi
example is insensitive to the exact times of the measuremdinthe objective function required that measurements
only appear for the times corresponding to the experimetatl, then the transform would need a second filtering
step to eliminate the unnecessary points from the timeserie

Finally, the modeler defines objective functions in the ‘@tive Editor’ tab and connects objective functions to
model tests in the ‘Objective’ tab. Figure 4.11 shows theneation between objective functions and the experimental
data in Figure 4.9. Like the transforms for tXenopus laevisnodel, the objective function for this model requires
little modeler configuration. This example uses one of th-buobjective functions in the Comparator, the weighted
orthogonal sum of squares distance between the experihtatéaand transform time series.

Figure 4.11: Model evaluation in the JigCell Comparatonfrihe Xenopus laevisnodel in Chapter 3. The darkly
shaded cells indicate errors that the Comparator detected.

€ JigCell Comparator E]@
Comparator  File Edit Run  Tools

Experiment | Transfarm E Transform Editar | Transform Debugger | Objective Editar | Compare™2

Mame Experiment Yalue Transform Yalue Ohjective Objective Re... | Crite... | Accept.. | Value Type Comment
MPF mphase activation L i(z, 0.75), (4, 0.51), (8, 0...[((0.0, 1.0}, (0.1, 0.98195... [WOS5 4. 1610969E-3 <= [0.075 Time-L Series Kumagai & Dunphy 1995 Fig 4b [
MPF interphase activation L iz, 1.0, (4, 1.0, (8, 0.85)(((0.0, 1.0), {0.1, 0.99835. . \W0SS 9. 273564 7E-3 <= |0.075 Time-L Series Kumagai 8 Durphy 1995 Fig 4b
MPF mphase inactivation L2 ki, 0,09, (16, 0,00 ({0.0, 0.0), €0.1, 9,94763, ., WSS 2.0523912E-3 <= |0,05 Time-L2 Series Kumagai & Dunphy 1995 Fig 3c
MPF interphase inactivation L2 [((2, 1.00, {4, 1.0, (18, 1.03)/((0.0, 0.0}, {0.1, 0.07346... (WOS5 4964028363 <= [0.075 Time-L2 Seies Kumagai & Dunphy 1995 Fig 3c
Zde25 activation Ca (1,25, 0.8), (2.5, 0,9), (... ((0.0, 0.0}, (0.1, 0,03747,., WOSS 180,41552E-3 == 01 Time-Ca Series Kumagai & Dunphy 1992 Fig 10
CdcZ5 inactivation Ca (5, 0.75), (10, 0.5}, (20, ...[((0.0, 1.0}, (0.1, 0.99096... WOSS [37.951549E-3 <= (0.1 Time-Ca Series Kumagai & Dunphy 1992 Fig 10
“Weel inactivation Wa (2, 0.5), (5, 0.0y, (7, 0.0... [({0.0, 1.0), {0.1, 0.96059. . \WOSS 66, 22322E-3 @= 0.1 Time-\Wa Series Tang Coleman Dunphy 1993 Fi..,
‘Weel ackivation Wa (7.5, 0.5), (15, 1.00) ({0.0, 0.0), €0.1, 0.01112,,, WOS5 [30,503805E-3 <= |0,05 Time-Wa Series Tang Coleman Dunphy 1993 Fi,.,
MPF activationfinactivation (.18, 0,06 Ho Yalue WOSS o Tgnore: MPF threshalds 1. Moore
TatalCyclin time lags (0.2, 45), (0.25, 400, {0.... Mo Yalue Mo Walue Ma Value TotalCyclin-Time Series |1, Moore =
JigZell Comparator 6.0.5 (Unofficial) :]

The.weighted-orthogenal-sum, of squares distance measweaxtthogonal distance between the experimental
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data points and a curve through the transform data points.tditm ‘orthogonal’ refers to the use of perpendicular
distances from an experimental data point to the curve srgthod, unlike the least-squares method that uses the
vertical distance. Label the: experimental data points = [x; x2 ... x,,]7 and then transform data points
y=1[y1 y2 ... ya.]T. Each data pointis itself a vector withmeasurements. Then, the weighted orthogonal
distanceD(x,y) is

m n q
D(x,y) = eixminy (dy« (@i — yjr))*. (4.1)
=1 k=1

Thee; anddy, in Equation 4.1 are weights that the modeler can apply tosathje relative importance of experimental
observations and measurements. However, this exampleastsveight to its default value; = d, = 1.

The Comparator then executes each of the model tests. Theci¥e Result’ column displays the values that
the objective functions compute. An objective-functiofueais a non-negative real number, with no upper bound.
Objective-function values are unscaled. Modelers mayidens. value ofl000.0 acceptable for one particular objec-
tive function, while they may want to keep the value beloWfor another objective function.

The ‘Criteria’ and ‘Acceptable’ columns allow the modelerspecify a tolerance for the objective-function value.
When the objective-function value does not pass the aitédren the Comparator flags that model test by highlighting
the row. The Comparator also flags other errors in the moddlguration. For instance, the Comparator highlights
the ‘Value Type’ column when the model test has experimetatd or a transform that does not validate for that data
type. Figure 4.11 shows both of these error-reporting meishzs.

4.4.2 Model Analysis Process

The Comparator synthesizes the information that the modatered into the other JigCell tools to create a repeatable
analytic process for a model. Figure 4.12 shows the anaprsisess that many biological models, including the
Xenopus laevisnodel, use. The modeler describes the model in the ModetBuibr another tool that supports
editing SBML. The Run Manager is where the modeler desctilbgsto execute the model. Next, the Comparator is
where the modeler describes how to score the model. Fitladynodeler must analyze the results of the comparison.

Figure 4.12: Analysis process for a typical comparison endigCell Comparator.
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The ultimate interest of the modeler is to determine whetiiveermodel meets particular standards of acceptability.
The modeler and interested stakeholders work togethet thege standards. However, the model output is too vast
for the modeler to examine and process the output in a timalymar. Moreover, the model evaluation process is often
difficult and tedious to perform repetitively. Modelersruo software, such as the Comparator, to automate repetitiv
tasks. Although the analysis process shown in Figure 4.fidvaates a single model test, this does not truly solve the
problem that the modeler has. Many model tests combine fodtelthe acceptability of the model. Automating a
single.modeltestrequires-that.the;modeler manually codled consider many separate tests.
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The Comparator attempts to alleviate this problem. The rieodan instruct the Comparator to run any number
of model tests at once and perform a comparison. The Congpamagénts user interface screens so that the modeler
conveniently can view and work with a large number of modgtkteWhen the modeler runs a collection of model tests,
the Comparator automatically determines the data deperetgischedules the transforms and objective functions, an
eliminates redundant computations to reduce the exectimian

If the modeler has a computer with multiple processors, theiComparator can perform transforms and objective
functions in parallel to further reduce the execution tifRaducing execution time is beneficial to the modeler and
improves the user experience of the software. The modeteratgperform model evaluation in a timely fashion if
the model tests take too long to run. However, solely redpeixecution time does not solve the model evaluation
problem. The model test results are still too voluminougti@ermodeler to consider all of the model tests and decide
whether the model is acceptable. Chapter 6 provides an dgdhgi shows this issue. Manual model evaluation and
analysis is slow even when significant automation is possithe modeler time that these processes require limits the
number of model tests that the modeler can apply, whichdithié size of models that the modeler can develop.

Visualizations are techniques that prevent informatioertmad. As Section 4.4.1 described, the Comparator uses
color and highlighting to identify questionable or probltic model test results. The modeler can scan the list of
model tests quickly, skipping past the model tests that,Fass$ only consider the model tests that the Comparator
flags as needing attention. Visualization does solve theeiedhluation problem for models of a limited scale.
However, this visualization approach does not work for nietleat have tens of thousands of model tests.

One solution for dealing with models that have large numbérsodel tests is to use a heuristic approach that
combines the results of many model tests into a single s@wetion 4.6 describes parameter estimation, which uses
this approach. Another solution for models with a large nandf model tests is to change the visualization so that
a larger number of model tests fit on the screen. In the ‘Obcipreadsheet of the Comparator, each model test
occupies a significant portion of the usable screen areanifiueler typically can view no more than fifty model tests
on the screen at once, which is insufficient for evaluatinglet®with hundreds of components.

Comparé is a Comparator add-on that can fit many more model tests oscteen than the standard Comparator
interface. The standard interface of Compauses the same arrangement of model tests, one per line, astioe
Comparator, but eliminates much of the information aboettiodel test except for the objective function result. This
additional space allows Compdrt display the results of many models side-by-side, a nwatj-comparison, for
a collection of model tests. The modeler can select the rsamtelording to a theme, such as different models for a
biological system ordered by the time that the modeler titiad particular model. Compéréhen allows the modeler
to visualize the entire collection of models and determihether the models become better over time.

The standard interface of Compamannot display more lines of text than the regular Compaiaterface. In-
stead, Comparenhas a second interface that puts all of the model tests andlsiod the screen at the same time. This
‘zoom view’ uses the same visualization techniques as #rasird view but eliminates all of the textual information,
leaving only a graphical indication of model performandguife 4.13 shows the standard and zoom view interfaces of
Comparé. In the standard Comparenterface, the objective function results use color tod¢ati model performance.
There are several different visualization coloring mosde€omparé, such as absolute and relative differences from
the model test threshold, binning, and historical compassagainst previous models. When the modeler uses the
zoom view, the visualization hides all of the textual infation about the model tests. The modeler can then spot
trends in the color patterns of the model tests and quicldgtifly changes in model performance.

Comparé ties together the results of many comparisons and gives tuelar a visualization method for large
numbers of model tests. It is easily feasible to visualizednads of model tests for dozens of models at once in the
zoom view of Compare As the number of model tests or models increases furthezdbm view produces blends
of the colors. Once color blending begins, the modeler ngdocan pick out individual objective function results but
still can identify general and large-scale patterns in thiection of model tests and models.

4.5 Libraries and Utility Programs

Previous sections alluded to how the applications of Jig@st on several libraries for reading, writing, and manip-
ulating-datas=-In-fact;nearly-all-of the numerical computatand data processing in JigCell occurs in libraries. The
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Figure 4.13: Compareinterface showing a multi-way comparison between a cotéecdf models and the zoomed
view for the same collection of models. The visualizationtaining textual information is unreadable even though it
displays fewer than half of the model tests.
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application code primarily deals with user interface isswehich take up only a small fraction of the total code base.
Each JigCell application has a corresponding library faadaanipulation:

e the Model Builder uses the SBML Parser,
¢ the Run Manager uses the Run File Library,
e and the Comparator uses the Comparison Library.

Additionally, JigCell has several standalone command4ools, simulators, and a Simulator API, which is a library
for communicating between simulators and applications.

The utility program that modelers most commonly use in JIGESBMLTOODE. SBMLTOODE is a conversion
program from the SBML format to the ODE format that Bard Eritneut developed [51]. As Section 3.1 described,
the modelers working with the original modeling processnariily used the XPPAUT program for computational
assistance. SBMLTOODE translates the models that Jig@idldiso that modelers can continue to use their old tools
while JigCell is under development. As SBML is a significgnmtther language for expressing models than an ODE
file, SBMLTOODE often must use convoluted ways of expressiglel features that have no natural representation
in XPPAUT. Therefore, the SBMLTOODE tool is not sufficient fassing ODE files as an exchange mechanism, and
there is no simple mechanism for translating ODE files batk 8BML files.

SBML Parser

The SBML Parser is the library in JigCell that is responsfblereading and writing model files in SBML. Marc Vass
created the original SBML Parser in 2002; Nicholas Allenateel a new library with the same name in 2004. The
word ‘parser’ in the name is a misnomer. In addition to paySBML, the SBML Parser validates model files, indexes
models for searching, computes conservation relatiomsepaghe MathML (Mathematics Markup Language) [16, 119]
that SBML uses for mathematical expressions, and convetteden infix presentations of a mathematical expression
and the MathML presentation.

The simplest portions of the SBML parser are those that déhlmading and writing SBML files. SBML is a
markup language based upon the extensible markup langidtle[140]. A large number of libraries for reading
XML documents exist, which reduces the involvement of thé&Bparser to identifying the semantic meaning of
XML elements from their context in the document. Since SBIg irestrictive language, with only a limited number

id v i ML elements, identifgiSBML elements from their context is relatively simple.
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However, the SBML Parser has a more direct role in the wriihi§BML documents. SBML prescribes default values
for many of the document elements, and the SBML Parser naresahe documents that it writes by omitting SBML
elements that have their default value.

Model validation and indexing is more complicated than paysAlthough SBML is a syntactically simple lan-
guage, many syntactically correct SBML documents are nnggass. SBML is a language with internal references
between XML elements and restrictions on the contents affieThe SBML specification further identifies several
dozen instances of ‘'semantic constraints’ that the syntalienlanguage does not reflect. A valid SBML document
must satisfy all of these semantic constraints. Validatiothe SBML Parser consists of checking that the model
satisfies semantic constraints and that the elements teat @l references identify exist in the model.

Indexing plays a crucial role both in the validation of SBMbaaliments and directly in the Model Builder applica-
tion. SBML documents contain many references between XMinehts. For example, the containing compartment
attribute describes the topology of a compartment. Thigbate reference to the containing compartment is solely
by identifier. SBML does not restrict a document from refegrio a compartment before providing a definition of
that compartment. Indexing allows for the rapid identifizatof SBML elements given an identifier and the possible
structure types that might have the identifier, such as otedrapecies, parameters, or compartments.

The most significant computational task that the SBML Pgpseiorms is the discovery of conservation relations
in the model. Although Section 2.4.2 described the prockagtomatically discovering a set of conservation relaion
in the model, the SBML Parser also allows the modeler to pseploeir own set. When the modeler proposes a set of
conservation relations, the SBML Parser must check thaeticonservation relations are valid for the model.

Validating the set of conservation relations that the mexdptoposed requires the SBML Parser to perform two
additional Gauss-Jordan elimination steps.

1. Check that the number of proposed conservation relat®one greater than the rank of the null space of the
stoichiometry matrix,

2. apply Gauss-Jordan elimination to the proposed consenveelations to check that the set of conservation
relations is linearly independent,

3. augment the original set of conservation relations withgroposed set of conservation relations,
4. and perform Gauss-Jordan elimination on the augmentéikma

If the proposed set of conservation relations is valid, tiemull space of the augmented matrix has the same rank as
the number of proposed conservation relations. This isvatpnt to saying that the proposed conservation relations
are all linear combinations of the original conservatidatiens.

Run File Library

The Run File Library is the library in JigCell that is respiine for reading and writing both run and basal files. As

Section 4.3 explained, a basal file overrides the paramataes, initial conditions, and compartment sizes in the
SBML file, while a run file defines collections of changes toltlasal settings. Although the Run File Library needs
to provide the same validation and indexing services as BMLSParser, run and basal files are significantly simpler
than SBML files and hence have a correspondingly simpleremphtation of these features. Instead, the bulk of the
Run File Library consists of routines for creating basakféed executing runs.

When a modeler starts using the Run Manager, they first mesteia basal file for their model. The Model
Builder permits the modeler to enter numeric values for p&tars, chemical species, and compartment sizes, and
many modelers choose to do this. Therefore, the Run Fileabybsupports creating basal settings directly from a
model. During run execution, the modeler then wishes togperthe reverse process and export the basal settings and
changes for a run back into the model.

Executing a run is the most difficult-to-implement servicattthe Run File Library provides.

1. Start:the simulationprogram that the run file specifies,
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2. transmit to the simulation program the default simulatantrol settings for the run file and the settings for that
particular run,

. apply the algorithm in Table 4.1 to produce an equivalentthat does not use inheritance,

3
4. replace the references to model elements in the formuleafth change of the run with variables,
5. solve the formula for each change using the basal settings

6

. insert the computed values back into the model,
7. and send the new model to the simulation program.

The Run File Library then forwards the time course that theugation program produces to the requestor.

Table 4.1: Algorithm for flattening a hierarchy of runs stagtfrom the runstart.

Initialize two stackgpending andcurrent.
Initialize a mapchangesfrom model element identifiers to formulas.
pending.pushstart
while pending #
r — pending.top
if r is in current then errorthere is an inheritance cycle
for each rump in r.parents taken from start to end
pending.pushp
current.pushr
while pending # () andpending.top= current.top
r — pending.pop
current.pop
addr.changesto changes

Comparison Library

The Comparison Library supports the storage and manipulati data in the JigCell Comparator. Additionally, the
Comparison Library provides standard data formats tharahplications use for exchanging experimental and time-
series data. Unlike the other libraries in JigCell, the Carigon Library is amenable to user extensions. Since the
library includes the transforms and objective functionthefComparator, and modelers wish to supply new transforms
and objective functions, it makes sense to provide a framlethat the end-user can modify.

Transforms and objective functions make up the majorityoafecin the Comparison Library. The Comparator pro-
vides18 standard transforms and objective functions for modetetse. Additionally, the framework for transforms
and objective functions in the Comparison Library signifitta simplifies the process of extending the Comparator.
For example, the Comparison Library automatically hanliiing together transforms with other transforms, finding
the experimental data that objective functions need, atisig both transforms and objective functions, and repgrti
errors during the evaluation process. Furthermore, thepaoison Library organizes the in-memory and external
storage of data, implements caching that reduces the numfib@nsform and objective function evaluations during a
comparison, and can persist transforms and objectiveifimgto disk even when these objects are user-supplied and
have unpredictable storage needs.

The Comparator, and hence the Comparison Library, reptedarta using the BioSPICE Time Series Format [4].
The name of this format is another misnomer as the format laaxy mipplications other then time-series data. An item
of data in the Comparator, a ‘data element’, is either a seal@e or a list. Scalar values have types such as integral,
real, or boolean. A list contains an arbitrary number oflist scalar values, indexed over the positive integers. ,Thus
lists can nest within lists to any arbitrary depth, whicloal data in the Comparator to mimic many commonly used
finite.and.seme;infinite.data-structures, such as bags, timessand matrices.
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Efficiently implementing data elements for the Comparasadifficult. Therefore, the Comparison Library pro-
vides a number of implementations that make tradeoffs betveeze, access time, density of the index set, and other
factors. The Comparison Library supports converting dements to and from textual forms, and reading and writ-
ing data elements for external storage. Similarly, the Canispn Library also supports many common mathematical
operations on data elements, such as taking sub-rangeses slt of the data.

Simulators and Simulator API

Simulation programs are the remaining area of numericalpedation that JigCell includes. JigCell has an in-house
implementation of Gillespie’s Stochastic Simulation Adigom, which Section 2.5.1 described. However, the remain-
ing simulation programs that JigCell comes with are thiadtp programs with many years of use. Obviously, the
authors of these simulation programs did not have JigCetlimd when designing their programs, and these simula-
tion programs do not support representing models with SBMIrthermore, simulation programs often lack a simple
way to connect with other applications.

Each simulation program in JigCell has a corresponding pgagervice. A wrapper service translates model
files from SBML to the native language of the simulation peogr executes the simulation program, and retrieves the
results into the BioSPICE Time Series Format. For exampeewrapper service for the XPPAUT simulator translates
an SBML model to an ODE file, runs the XPPAUT program, and thenses the output file to create a time series.

This simple description of a wrapper service hides many efdmallenges. While mathematical expressions in
SBML can make use of a large variety of operators and methBBRAUT has a limited mathematical language.
Thus, the wrapper service must translate the features fRBAXT does not supply, such as trigopnometric and logical
functions. Moreover, XPPAUT does not have structures imitgleling language that are exactly like the structures in
SBML, such as events and rules, and has a restrictive naromgeation. A wrapper service frequently must rewrite
the model extensively during the translation process.

The Simulator API then provides the plumbing between theppea service and applications. A consumer of
simulation data often relies on only a small repertoire oéragions, such as loading a model, changing simulator
control settings, configuring output, and generating datze Simulator API generalizes these operations for time-
course oriented simulation. From the perspective of aniegmn, the Simulator API is a simulation program. The
application can query the Simulator API about its contrdtisgs and can invoke common simulator operations.
However, the behavior of the Simulator API changes depenaimthe currently selected wrapper service. When the
modeler selects a different simulation program, the césetiings of the Simulator API change to reflect the control
settings of the underlying wrapper service. Moreover, therations of the Simulator API delegate to corresponding
operations in the underlying simulator. The Simulator ARKmanism allows the JigCell applications to access a wide
variety of simulation programs without presupposing wtsthulation programs the modeler wants to use.

One side benefit of creating the Simulator API was the coostnu of a simulator-independent test suite in JigCell.
Testing a simulator is difficult because each simulatiorgpam requires a different format for the test data. Thus,
adapting existing test data to a new simulation program peesive. JigCell employs the Simulator API to use the
same model format, SBML, with many different simulation gnams. Therefore, JigCell can reuse a standardized
suite of test models with any simulation program that theusator API makes available and compare the results from
simulation program with another.

4.6 Future Software Projects

As Section 4.1 mentioned, JigCell is not complete in the s@figproviding all of the services of a typical problem-
solving environment. In particular, JigCell does not cathe provide effective and transparent access to high-
performance computing resources. Moreover, JigCell icootplete in the sense that the revised modeling process,
which Figure 4.1 shows applied to JigCell, indicates berafiasks that JigCell does not support. These two measures
of completeness converge in the first potential new areaplfcgtion for JigCell, parameter estimation, which severa
sections alluded to previously.
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The second potential new area of application for JigCellrigget management. The applications in JigCell
produce and consume large amounts of data with varied typissoften difficult for modelers to organize this data,
leading to lost or misplaced data files, or the creation oftiplel copies of data that quickly lose synchronization. An
application for project management in JigCell would orgarthe data files that constitute a particular model. The
project management tool would then present to the modeddishof available models and the tasks that JigCell can
perform on those models. The JigCell project did not purgegept management extensively, and this dissertation
does not consider project management in detail.

Parameter Estimation

While building a model, a modeler sometimes employs a ratstemt whose value has no definitive experimental
evidence. Furthermore, the rate constant may have a smmifirange of possible values that the modeler could
try. Over time, models accumulate a greater number of thelstively unconstrained rate constraints as modelers
generally build models faster than experimentalists cetegghe corresponding experiments. Section 3.1 desciilged t
parameter twiddling process that modelers use to cope hatfetunconstrained rate constants. Modelers successively
experiment with many different values for the rate constagmtpending great effort to evaluate the model and identify
new feasible regions of the parameter space.

The JigCell Comparator automates the comparison process/&buating a model. However, the Comparator
still relies on the modeler to supply guesses for the parametues. Without automated fitting, the modeler must
calibrate the model parameters by manually searching fat aad optimal regions of the parameter space. Parameter
estimation is a class of techniques that supply a guessdardkt parameter vector to try with the model.

A parameter estimator explores parameter space whilegttgiminimize an objective function. The Comparator
allows modelers to define arbitrarily complex objectivedtions that run as programs during model evaluation. Few
general-purpose techniques accommodate such objectieédns. Most parameter estimation procedures are appli-
cable only to simple curve fitting, where the experimentséhdae time series and the model output needs minimal or
no data transformation. If the modeler uses the transformd®ajective functions from the Comparator, then the data
are typically not a direct solution to the differential etjoas of the model but rather a complicated, nonlinear func-
tional of the differential equation solution. Furthermgtteese functionals involve both dependent and independent
variables that are subject to experimental error.

Figure 4.1 included two stages, theoreandreport stages, that distinctly belong to parameter estimatiothén
revised modeling process, these stages are a subsetvttiuateandrepair stages. Thecoreandreport stages have
a separate representation in JigCell because of the impatcthtese stages have on the model development process.
The scorestage defines an algorithm that determines whether one pgganector produces a more acceptable fit
than another for the model. The algorithm requires expertaialata, an executable model, the acceptable range of
parameter values for the executable model, and a user-defijective function. This setup typically comes directly
from the experimental model that the modeler builds in thenarator. Theeport stage injects the fitted parameter
values back into the modeling process for study and testing.

Local parameter estimation algorithms

A local parameter estimator takes measured steps from thentyparameter vector based on objective function eval-
uations. Although this makes local parameter estimatorg fast at homing in on nearby, good parameter vectors
when the objective function is smooth, there are severallomaks to local parameter estimation. First, local param-
eter estimators have a hard time finding distant, good paemectors. A local parameter estimator can fall into
wells, or local minima, of the objective function, and esogfrom these wells is difficult. Second, the user-defined
evaluation procedure in the Comparator rarely leads to @#mabjective function unless the modeler takes some care
when defining the evaluation process. In circumstancesemhese obstacles do not apply though, local parameter
estimation is typically worthwhile.

ODRPACK (Orthogonal Distance Regression PACKage) [33334js a mathematical software system that per-
forms local parameter estimation. ODRPACK uses a trusbregévenberg-Marquardt method. The Levenberg-Mar-
guardt.method.starts.with.the.steepest descent method asaitdggnchanges to Newton's method when approaching
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the solution. The trust-region implementation of the Léweng-Marquardt method determines the step size using a
confidence measure of the local model of the objective-fanctalue. At each step, ODRPACK compares the ex-
pected improvement in the objective-function value foirigkthe step with the actual improvement. The agreement
between the expected and actual improvements in the ol@efttnction value indicates whether ODRPACK should
expand or contract the trust-region radius.

The use of a local model in ODRPACK causes slow convergertbe ibbjective function is not differentiable near
the optimum solution. The expected improvement on which BBBK bases parameter vector steps is essentially
an estimate of the derivative. Step functions in the objeefiinction value can appear when matching categorical
observations, such as whether a mutant strain of an orgahismes for a period. However, for a correct model of
a biological system, it is unlikely that a step in the objeetvalue is directly next to an optimum solution. If the
true parameter vector had a nearby discontinuity, then thanism would show sensitivity to minute environmental
changes. Extreme sensitivity to the environment is unfavierfor survival.

ODRPACK does not assume that all of the measurement ermis tre dependent variables [39]. Instead, ODR-
PACK seeks to minimize the weighted sum of orthogonal distarbetween the model output and the experimental
data. The weighting factors scale the residuals of the fitexipdess the confidence that the modeler has in the reliabil-
ity of a particular experimental observation. The outpuD8RPACK gives a locally-optimal parameter vector and a
measure of the goodness-of-fit of that parameter vector.

Global parameter estimation algorithms

A global parameter estimator, in contrast with local parmestimation, eventually looks in every neighborhood in
a finite-dimensional parameter space. Global parametenatsts use a systematic method for searching parame-
ter space, sometimes backtracking even when searching aeggon of parameter space leads to higher objective-
function values. A parameter-estimation method that ssgieely sampled points along a space-filling curve that
winds throughout parameter space meets the criteria ftwagjmarameter estimation. However, such a scheme is not
an efficient way to search parameter space. Good, globahgteaestimation methods seek to maximize the amount
of information that they derive from each objective-funatevaluation.

DIRECT (Dlviding RECTangles) [65], is a variant of Lipschin methods for constrained global optimiza-
tion. DIRECT searches for the minimum value of an objectivaction, min,cp f(x), inside a closed region
D = {x € E"| ¢ <2 < u} whose boundary consists of simple planes. There is an asummpade here that the
objective function is Lipschitz continuous @n, satisfying| f(z1) — f(x2)| < L||x1 — 22| forall 1, 22 € D. This as-
sumption does not necessarily apply to the arbitrary objétinctions that the modeler can build in the Comparator.
When the objective function does not satisfy this assumpfldRECT will still eventually terminate with the global
minimum value of the objective function. In this case, hoae®IRECT can no longer guarantee that it searches for
the global minimum efficiently.

The Lipschitz optimization method has had many practicpliagtions in science and engineering. Unlike some
other methods for global parameter estimation, the Ligggechethod requires that the modeler set few control param-
eters and does not rely on approximating derivatives orattoge analytical information about the system. However,
the Lipschitz constant of a particular objective functisroften unknown and is difficult to estimate. The DIRECT
method converges to the global optimum without requiringudedge of the Lipschitz constant [75].

The DIRECT algorithm takes its name from the key step of dingdectangles, although mathematical literature
more commonly refers to these rectangles as boxes. DIRE@pé#tern-search method, which takes moves based
on the objective-function values that it observes at a patiépoints. The points for sampling the objective function
are the centers of the boxes. Center sampling is generallgnéaigeous to corner sampling when the number of
parameters, and hence the number of dimensions in the pespace, is large. Most large-scale biological problems
have a correspondingly large number of unconstrained peteas

A box in the DIRECT algorithm is potentially optimal if theexists a value of the Lipschitz constant for which
that box is the most likely to contain the global minimum. Tehés a simple algorithm for finding the potentially
optimal boxes. If viewed as a scatter-plot, with the two disiens of the plot the size and objective-function value
of the boxes, then the potentially optimal boxes are the tavgit boundary of the convex hull. Each iteration of the
BIRECT-algorithm.subdivides-all-of the potentially optintadxes. DIRECT can operate in an ‘exploratory mode’,
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which emphasizes searching untested boxes, or in an ‘éafpyi mode’, which emphasizes searching boxes with
better objective-function values. The modeler uses a obpairameter to bias between the two modes of DIRECT.

DIRECT is relatively robust to noise in the objective-fupctvalues [65]. The amount of noise in the objective-
function values limits how quickly DIRECT converges to thexitmum. This insensitivity to noise makes DIRECT
suitable for application to stochastic models, which ititarally introduce noise into the model and model-evatrati
process. Current implementations of DIRECT cannot handéger variables or constraints on the parameter space
other than simple bound constraints. Furthermore, DIREElatively inefficient for finding an accurate minimum
value of the objective function. Instead, it is best to rulRBCT in the exploration mode and then use some local
parameter estimation technique to find the true minimum faacollection of candidate starting points.
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Chapter 5

Software Requirements for the JigCell
Modeling Environment

During development of the revised modeling process in 8e@&i3, modelers reported four distinct areas of concern
that they have about the original modeling process. Theasedeas are support for model documentation, testing,
standardization, and automation in the modeling procdss JigCell modeling environment that Chapter 4 introduced
is an implementation of the revised modeling process, asgbibssible to test JigCell for its support of these concerns

The goal of documentation is to record critical informatalmout the modeling process. Modelers need model
documentation at each modeling process stage. The credtioodel documentation is critical for model accreditation
and for planning future modeling tasks. The documentataaigjof the revised modeling process are to record

¢ the model each time the modeler transforms the descripfitreanodel,

e the procedures that the modeler used for testing, to supptotnated model testing and review of verification,
validation, and testing methods,

e and the results of model testing, for comparison againstréuinodel tests and for presentation to decision
makers during model accreditation.

The primary model testing technique that the biological elers in Chapter 3 used for model validation is the
comparison of model output against historically colle@gderimental data. However, there is a limited quantity and
quality of available experimental data for a particular mlodMoreover, conducting new laboratory experiments for
model testing or expansion of a model is a significant expefise time that modelers spend performing model vali-
dation is cheap in comparison. The JigCell modeling envirent emphasizes verification during model construction
to prevent the introduction of errors that strain the limlitesting resources of the modeler.

The goals of the area of model testing are to introduce mogigfication, validation, and testing activities into
the modeling process early and to continuously monitor tbeehfor introduced errors. Balci [17] codifies several
indicators of model credibility, which automated modelingls can perform continuously during model development.
The model-testing goals of the revised modeling proceswarerify

o that the graph structure of the wiring diagram correspoadisé conceptual idea that the biologist has in mind,

o that the modeler is using the names of chemical speciestikirate laws, and parameters consistently across
the model,

¢ and that the simulator has all of the information about thel@hand execution environment that it requires and
can execute the model properly.

Independent model verification and validation are testiciivities by someone other than the original model
developer.or-stakeholders-thatimprove the quality of thdehfil4]. Independent model testing reduces the potential
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for modeler bias in evaluation, promotes the earlier deteaif errors, and reduces the cost of error detection and
correction. Introducing independence into the modeliraepss at each iterative cycle, with the goal of supporting
independence for all testing activities, requires sigaificadvances in the four areas of concern that this section
outlined previously. Improving the modeling process irsthareas should ultimately lead to increased rates of model
accreditation and acceptance by decision makers. ThelligGdeling environment has the model-testing goal that
an agent independent of the original model design or spatidit teams can perform model verification, validation,
and testing from a plan that the model developer recordedqursly.

The biological modelers in Chapter 3 use wiring diagramsotmmunicate their models initially. Unfortunately,
no universal standards exist for the graphical languageiwfigvdiagrams, although some representations, such as
those of Kohn [80], are increasingly popular. As Chapter stio@ed, the pathway modeling community currently
is standardizing SBML [71, 72], which is an XML-based regmsition of biological models at the level of chemical
reactions. While SBML applies to wiring diagrams in the getist model editing tools can convert between SBML
and wiring diagram representations, modelers should mettly edit SBML files. The main purpose of SBML is
to facilitate model exchange between modeling groups, Wka tise their own preferred modeling tools to load the
model. The JigCell modeling environment currently supp&BML Level 2 Version 1 [54].

The goal of the area of standardization is to adopt

¢ uniform notations that make model communication easier,
¢ and uniform processes that make model development easier.

Furthermore, each stage of the revised modeling processdmagin-specific information that modeling tools can use
to construct uniform sequences of tasks for that stage. y\mpuniform processes can prevent some types of errors
in the planning stage of the model and can reduce the chamneda¢lers applying incorrect modeling techniques.

Much of the original modeling process that Section 3.1 dbedrconsists of work that modelers perform repeat-
edly. The goal of the area of automation is for the computgreldorm some of these repetitive tasks and speed
up other tasks substantially. Verification, validationgddesting activities are automatable throughout the modeli
process. Using automated tools that support these agtivitin reduce significantly the time and effort for model
testing [21].

The biological modelers that use JigCell repeatedly moplifsameters and initial conditions. After each modifi-
cation, these modelers then compare the revised modelsagajmerimental data. The automation goals of the revised
modeling process are to perform

e regression testing as frequently as possible, to ensuredsith model transformation maintains the quality of
the model,

¢ testing activities from previous model development cydesheck that the model is still acceptable,

e numerous and specific testing activities, so that after tbeater introduces an error, the modeler can then
identify the location of the error in the revised modelinggass and in the model,

e and testing activities automatically while the user is nfiyidg the model, giving feedback on the performance
of the modifications.

Additionally, biological models can repeat operation®asmultiple chemical reactions or incorporate other mod-
els as subcomponents. Sufficient support for both modetlatdization and automation would allow the use of
well-tested, black-box components to implement both riegubaperations and model fragments.

The focus of this chapter is to develop standards for meagtine software applications in the JigCell modeling
environment. Chapter 3 described how modelers previousheldped models using the original modeling process
and introduced the revised modeling process. Chapter ddated the JigCell modeling environment, which is an
implementation of the revised modeling process. The ptedwapter develops standards for measuring the efficacy
of the JigCell modeling environment and how well JigCell anats the revised modeling process. The standards for
measuring the software applications come from user irgarwi(user requirements), the modeling methodology that
Section.3:2.described.(methodeloegical requirements)frammd domain experience (domain requirements).
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This chapter starts with an overview of four major categod&requirements to support: documentation, model
testing, standardization, and automation. These catgofirequirements then expand into methodological require
ments that correspond with ideas in the conical methoddlloglySection 3.2 presented. Section 5.1 and Section 5.2
explore the performance of model verification, validatiamd testing from the perspective of a domain expert. These
sections describe the success that the JigCell modelinganvent has had with each of these techniques for support-
ing experts in the domain of biological modeling. Sectiod iBtroduces the process of collecting user requirements
and explains how this dissertation performs requiremesging. The remainder of the chapter describes the user
requirements and the results of requirements testing fdr ebthe major JigCell applications.
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5.1 Building Modeling Software for Domain Experts

The successful construction of a model requires combinipgrise in the problem domain with expertise in the prac-
tice of modeling and simulation. Many domain experts théthmodels have at least some background knowledge of
modeling and simulation. Modelers gain this knowledge seha through formal learning but mostly from the ex-
perience of building models in the problem domain. Althodgmain experts are often not modeling specialists, they
can successfully complete modeling projects by using thiet tools. Developers build software programs from the
knowledge and experiences of modeling specialists, crgatiodeling tools that assist with modeling and simulation
tasks. A domain expert draws upon these resources by usidglimg tools to solve a problem in their domain.

Domain experts often do not perform sufficient model verifara validation, and testing due to a lack of accessible
support for these activities in modeling tools. An increiasmodel verification, validation, and testing would impeov
the likelihood of success for modeling efforts. The targediance for general purpose modeling tools is often the
modeling specialist. A domain expert might find a generappae modeling tool inadequate because of assumptions
that the tool makes for the target user community, such asatiguages that the tool uses for expressing models
and modeling concepts, support for features that are netast to the problem domain of the expert, and a lack of
modeling guidance for the tool user.

User personas

A modeling tool is unlikely to accommodate domain expertrsisaless the tool builders explicitly include domain
experts as a user class. The modeling tools that this disisgrtliscusses specialize to experts in the particulaitom
of biological modeling. Moreover, the developers of theCi#tf modeling environment had direct access to biological
modelers for study. Suppose that the developers of a madelihdid not have an appropriate domain expert available.
If a software developer does not have actual user repreés@stathen it is helpful to construct personas that typify
how a user class might use the software product [82].

Software developers can employ user personas when coingjdew development decisions affect users of the
modeling tool. Although the developers of the JigCell madgenvironment had access to biological modelers, these
biological modelers did not always know how to perform aigatar modeling task. User personas of domain experts
performing model verification, validation, and testing canve as substitutes in this situation.

The following text gives a small sample of scenarios that @estrate domain experts performing verification,
validationg:and.testing.on-reaction-oriented models.
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Scenario 1: The domain expert wants to use a model that saredsa created previously and needs to check that
the model is suitable.

Abel is a biochemist who is trying to understand signalingogisses in a tissue culture. Abel researched the litera-
ture for suitable models and obtained electronic versiéssweral models that appear interesting. The documentatio
for the models does not include enough details about thédataon and testing procedures, so Abel wants to check
that the performance of the models is acceptable for thedete application. Abel knows that integrating multiple
models together is error prone. Therefore, Abel needs ibatbiat he is integrating the models correctly.

Scenario 2: The domain expert is acting as an independemitaggperform verification and validation activities
on a model under development.

Joan is a process engineer with experience in high-rateobisrconversion. A pharmaceutical manufacturer is
using a simulation study to reduce the cycle time of one df freducts. The manufacturer hired Joan to help validate
the models that they are creating. Joan will perform facielatibn (a review of simulation output for reasonableness)
and participate in model reviews and walkthroughs. Joadsieeunderstand how the models from the manufacturer
work and test the models by performing simulation experitsien

Scenario 3: The domain expert is developing an original nhadkbout the assistance of a modeling specialist.

Steven is a physicist working on a new theory of particleretéon. It is difficult to predict some of the conse-
guences of his theory, so Steven decided to use a discrateravdel to test his intuition. Steven decided to build the
model himself rather than hiring a modeling specialist bseahis is a side project, with little budget. The outcome
of the simulation is a little different than Steven expectaat now he is unsure if the error is in his model or in his
intuition. Steven may have a variety of other reasons fdding the model himself, including

e cost of employing specialist,

o difficulty of finding specialist,

¢ value of employing specialist not understood,

e model turnaround time,

e confidentiality or secrecy of information,

e unable to transfer domain knowledge or requirements,

e modeling objectives in flux,

e and expert learning from model behavior or constructiorcess.

These three scenarios describe domain experts that am@rmparf model verification, validation, and testing.
However, the domain experts each have different modelimysimulation goals. Abel is attempting to reuse an
existing model. Joan is part of a larger simulation studyhwitparticular business objective. Steven is constructing
a new model. The scenarios for using a modeling tool deterthia techniques that help support the domain expert.
Therefore, it is important that the developers of a modeiig consider how domain experts will use the tool when
deciding whether to incorporate a particular support e

Pitfalls

Although it seems clear that keeping domain experts in mindmbuilding modeling tools is beneficial to the model-
ing community, including this support does have cost. Thetrobvious cost of building modeling tools that support
domain experts is the cost of designing, building, and nadiitig these tools. Including domain experts as a targeted
user class may require sacrifices in quality, timelinedgieficy, reliability, robustness, testability, and usifofor
other user classes. These costs and tradeoffs make it immpéot tool developers to consider how, and why, domain
experts would want to use a modeling tool.

A domain expert that acts without sufficient modeling andudation guidance also incurs cost in the form of the
risk-of failure--Modeling-projects.that fail have opporttyncosts in addition to the expense of the project. Starting

www.manaraa.com



5.2. DOMAIN SUPPORT FOR MODEL VERIFICATION, VALIDATION, AND TESTING 69

the modeling process over again drains resources from atbghwhile activities and delays the return on invest-

ment of using modeling and simulation. Moreover, produ@ngncorrect model is costly as the detection of model
errors through operational use is difficult and time-consignMeanwhile, decision makers may spend money and
credibility on the results of an invalid model.

Arthur and Nance [14] emphatically conclude that indepanhdeodel verification, validation, and testing is an
important technique for mitigating risk in model developrheReducing the risk of failure lowers the expected costs
of model development, use, and maintenance. Moreover, lersasn expect that incorporating independence into the
modeling process improves model quality and operationakctness. A domain expert who is developing a model
might find that employing outside help for model verificatioalidation, and testing is cost effective. Employing
outside help is particularly effective if the model is of aitical” nature, has a high cost of failure, or has a cost for
error detection and maintenance that exceeds the cost epémdlent model verification and validation. However,
the use of independent model verification, validation, astiig does not preclude the need for modeling tools that
support domain experts. The independent agent may also damaiil expert instead of a modeling specialist.

When not employing a modeling specialist, the domain expestan increased risk of selecting an inappropriate
modeling and simulation technique. Although modeling $gamovide guidance about which techniques to employ,
the tool user must ultimately choose how to develop the mdffélen modelers use an inappropriate technique, they
can introduce difficult-to-detect model errors. Corregtinese errors may require discarding some of the work done
on the model, which is an expense of time and money that cdrtdethe failure of the modeling project.

5.2 Domain Support for Model Verification, Validation, and Testing

There are many techniques for better adapting modeling toahe needs of a domain expert. This section focuses
on techniques that aid the performance of model verificatralidation, and testing by domain experts. Table 5.1
summarizes the techniques that this dissertation incladdsates the degree of support and impact of the technique
in the JigCell modeling environment. Table 5.1 does notngtteto rate the impact of techniques for which the
degree of support is not measurable. This dissertation doeattempt to provide a comprehensive list of model
verification, validation, and testing techniques for sugipg domain experts. This dissertation presents the igdes

that simulation studies [6, 9] previously tried for the J&iGnodeling environment. Many modeling tools other than
JigCell employ these techniques, with a positive effectatials supporting the domain expert.

Table 5.1: Summary of degree of support, impact, and agplitato other problem domains for techniques that
support a domain expert in model verification, validatiam] éesting activities (L = Low, M = Medium, H = High).

Technique Degree of support Impact Applicability
H H

Using domain terms and concepts for models H

Using domain terms and concepts for modeling H M M
Structuring data and validating data entry M H M
Integrating modeling tools into an environment M M M
Maintaining a model test plan M M H
Actively monitoring model quality L L L
Diagnosing model errors with a knowledge base - - L
Keeping historical records of model development and tgstin L M H
Presenting multiple visualizations of models and modebotst M L

Table 5.1 repeats the applicability rating for each techeitp problem domains other than reaction-network mod-
eling from Allen, Shaffer, and Watson [11]. There are prabiomains for which these ratings are less accurate. For
example, the use of knowledge bases for diagnosing modaisdnas an applicability rating of ‘low’ because there
are many problem domains that have too little history to thgveeasonable classifications of past domain expert ex-
periences. Modeling tools that support a narrowly-defiretiem domain with a large and detailed historical record
would-find-thatimplementingsthis.technique is more effeztiv
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Using domain terms and concepts for models

For decades, modelers have recognized the need for custguages for modeling and simulation [47]. Using a
language designed for modeling and simulation reducesrttfmuat of information that a modeler needs to enter as
compared to a general-purpose programming language. Mereaising the level of abstraction of a language re-
moves some of the error-prone and resource-intensive mggthiat modelers must employ to translate their ideas into
the language. Many modeling languages are for generalegarmodeling, although some specialize to a particular
modeling and simulation technique, such as discrete ewmnlation [138].

Introducing domain concepts into a modeling language talgee a domain-specific modeling language is a
powerful technique for making models more accessible taltmain expert. A domain-specific modeling language
allows domain experts to better understand, modify, dgyelod test programs written in the language [134]. Testing
and debugging a model requires an in-depth understanditigeafonstruction and behavior of the model. Using a
domain-specific modeling language makes the structurewaratibn of the model more readily apparent.

Building a domain-specific modeling language requirescsiglg a problem domain, gathering knowledge about
the domain, and reducing that knowledge to semantic obggalsoperations. Selecting a problem domain involves
making a tradeoff between the focus and size of the languAdanguage that represents a large domain or scope
can only weakly specialize to any particular aspect of thmaia. In contrast, a language that tightly focuses on a
small domain may have a limited number of interested useeseldping a domain-specific modeling language often
requires several iterations between prototyping the laggwand having experts in the targeted domain give feedback
about the applicability and ease-of-use of the languagke [77

There are many forms of domain-specific modeling languasyes) as textual languages, graphical languages [25],
spreadsheet languages, or other forms convenient for timaidcexpert. Language designers construct the language
by hand or by using meta-modeling tools [2]. It is difficultdonstruct a domain-specific modeling language that is
both easy for a modeler to write and easy for a computer togsod_anguages that are difficult for a modeler to write
require modeling tools.

CellML [45] and SBML [72] are domain-specific modeling larages for biochemical models. Both languages
are structured, textual languages that support the déiseripf models using domain concepts, such as molecular
counts, chemical reactions, and cellular compartments.dBvelopment of SBML is a good example of the tradeoff
between focus and size in a domain-specific modeling larguddpere is continuous pressure to directly support
additional types of models in SBML, such as flux-balance nsddéowever, the committee responsible for designing
SBML must struggle with the problem of adding this suppotheut placing an undue burden on the tool builders
that implement the language. There is also concern thatngdke language too broad will lead to communities using
disjoint subsets of the language, with no real communiodtietween these groups. As SBML becomes larger and
more complicated, understanding models written in theuagg becomes harder.

The JigCell modeling environment uses SBML to representeisoof biochemical reaction networks. As Sec-
tion 3.1 described, the observed biological modelers use®DE file format of G. Bard Ermentrout. However, the
ODE file format stores only the differential equations, dimg the biological significance of these equations.

SBML stores both the mathematical and biological inforaa@bout the model, giving domain experts a better
understanding of why the model uses a particular diffeaéptjuation. Previously, biological modelers primarily de
veloped models in computer code and then converted theietada text, figures, and equations before publication.
This conversion frequently introduces errors that impéeeréplication of results and further development of a pub-
lished model [85]. Domain experts benefit from the use of aaarspecific modeling language by having access to
the original model description in a more readily apparentifoAdditionally, SBML is a standardized format, which
allows other modeling tools to read and understand the rsodel

Using domain terms and concepts for modeling

Along with customizing the modeling language, it is alsoigdsde to use the language of the domain expert in
modeling tools. When using a domain-specific modeling laggyu model editing tools naturally adopt domain terms
as the easiest way to express the model to the user. Howbeedomain-specific modeling language is unlikely
to-describe the inputs-and-actions of model testing toolsm&n-specific modeling languages typically describe
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models rather than activities done with a model, althougiblem-solving environments are specifically intended to
do both [6, 137]. Modeling tool developers may need to efiwit preferred terminology from the domain expert.

The model and modeling tools must accommodate the typespariements that the domain expert wishes to
perform on the model. Valentin and Verbraeck [133] presendlgines for creating a domain-specific modeling
language that include consideration of this issue. Usimgaln terms and concepts in modeling tools aids the domain
expert in matching the functionality of the tool to their dee

The JigCell modeling environment uses domain terms andegmiado provide a better user experience. Users
found confusing the terminology that early versions of &thjGsed for modeling activities. In particular, JigCelkds
modeling and simulation terms, such as ‘experimental migithalt were too similar to terms that biological modelers
used for domain activities, causing conflicts. Renamingéhms that the JigCell applications displayed in their user
interfaces improved user understanding of the capalsildfethe modeling tools. Additionally, the modelers using
JigCell reported that they more readily found features sapplications when the sequence of steps for a particular
modeling activity was analogous to the original modelinggasss. JigCell restructured some of its modeling activitie
to better resemble the original modeling process, whichentearning how to use the applications faster.

Structuring data and validating data entry

Desk checking, inspections, reviews, and walkthroughsvasdel verification and validation methods that require
careful scrutiny of the model by the domain expert. Syntaatid typographic errors are a distraction during these
model-testing activities and can potentially hide serieusrs. After the modelers fix the syntactic and typographic
errors, they must retest the model to make sure that thegated the identified errors without introducing new errors.
The prevention or early detection of these types of erratages the testing burden of the domain expert. After the
modeler corrects all of the superficial errors, the domapeeixcan test the model for more fundamental errors.

Two important techniques for preventing the introductidrsyntactic and typographic errors are the use of val-
idating and structured data editors. Validating editoreaghthat user input is reasonable before applying it to the
model. Structured editors break the task of entering dataampredefined collection of attributes, values, and rela-
tions [55, 70]. A structured editor changes the organiradiodata from text to a more communicative form. Schank
and Hamel [126] indicate that the use of structured editassthe additional benefit of making model modification
more accessible to the domain expert. Since it is difficuaiidate input unless the modeling tool specifically defines
the class of valid inputs, validating editors are frequealso structured editors.

The spreadsheet interfaces of the JigCell modeling enwieat are examples of structured editors for biological
models. Each column in one of the spreadsheets represemtiscalar type of information about the model. A domain
expert using the JigCell Model Builder does not need to Itaersyntax of SBML before building a model. However,
many of the fields in the user interfaces of the JigCell apgibims perform only minimal validation on the user input.
For example, the JigCell Model Builder checks that the nafizeumit of measurement is legal but does not check that
a unit of measurement with that name exists in the model.

Integrating modeling tools into an environment

Integrated modeling environments supply tools that suppaitiple parts of the modeling and simulation lifecycle.
An integrated environment also supplies a modeling metlogydy selecting a particular set of tools and controlling
how modelers use those tools in concert [27]. Comprehemsaeling environments reduce the need to locate a
modeling tool for a particular activity. Carefully selaati the available tools in a comprehensive environment also
reduces the risk of the domain expert using an inappropmatieling and simulation technique. Errors from using an
inappropriate technique are normally difficult to detea anrrect. Cohesive environments have well-tested exaang
of model information between tools, reducing the loss oflifige/hen the model is transformed.

The integration of tools in a modeling environment is a amntim from loose to tight coupling. Loosely coupled
modeling environments are easier to make comprehensigbtlificoupled modeling environments are easier to make
cohesive. The Simulation Model Development Environmef} [& an example of a modeling environment that the
developers coupled loosely and designed for compreheosixerage of the modeling and simulation lifecycle. The
Simulation.Medel-DevelopmentEnvironment supports thé@methodology by selecting tools appropriate for each
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step of that methodology, including tools for model gerierattranslation, verification, analysis, and management.
Modelers can specialize the environment by adding new timwlshemselves or their domain of expertise. As a
research environment, the Simulation Model DevelopmemirBnment uses loose coupling to ease the creation and
testing of prototype modeling tools.

Integrating modeling tools is a requirement for integrgtime model verification and validation functions of those
tools [40]. Having integrated verification and validatiaimportant because it improves the coverage of model
verification, validation, and testing activities along tinedel lifecycle. As modelers move from tool to tool, they
never lose the ability to evaluate model quality. The aptiit transfer model testing information between modeling
tools also reduces the startup costs of using the modelcagidn, validation, and testing capabilities of a tool.

The JigCell modeling environment is an integrated envirentfior building models of biochemical reaction net-
works. JigCell is comprehensive with respect to the revisedeling process of Section 3.3. However, the JigCell
modeling environment does not tightly couple its applimasi and is not cohesive. Although one JigCell application
can read the model data that another one of the applicatieated, the modeler has no effective way to move between
the applications. Moreover, the applications of JigCalyfrently discard the results of model testing, preventthgro
applications from examining the model tests that the apfiio performed and the results of those tests.

Maintaining a model test plan

The core of a model test plan is a repeatable collection afiastes for model testing. A scenario, called a test
case, describes a sequence of actions to perform on the modeln expected outcome for each action. The term
‘failure’ for a model test indicates a problem in the modehex than the model test. If the model contains stochastic
components, then the description of the expected outcormmiplex. Non-deterministic models can produce many
equally correct outputs from a single set of inputs. Whea ddcurs, the model test must treat the observations of
model behavior as coming from a sample space and statigtioadlyze the results.

Documenting that a model passes its test plan and justifyimg these test cases demonstrate that the model is
suitable for a particular purpose improves model credjbilBy maintaining a model test plan, the next user of the
model benefits from the body of evidence that the modelerldped during model accreditation [43]. Balci et al. [23]
give an organization for a formal and comprehensive plaresfirig and accreditation. This level of detail is not
necessary for all uses of a model. However, it is instrudtiveeview the types of information that the modeler can
collect during model testing.

Maintaining a model test plan also assists the domain expeltveloping the model. During the model devel-
opment process, a modeler iterates between refinement ahchton of the model. Without a repeatable test plan,
model verification, validation, and testing is a scatteststpproach that is unlikely to add significant value. Modgle
can measure their progress during model development by nsileling tools that support test plans.

The JigCell modeling environment provides uneven supporbéiilding model test plans. Although the JigCell
Comparator, which specializes in performing model veriftrg validation, and testing, almost entirely focuses on
building test plans, the other JigCell applications prewdinimal support for this technique. A modeler using the
JigCell Model Builder or Run Manager has no means of recorthe tests that they perform on the model or the
results of those tests. Although the JigCell applicatioeggrm some model tests automatically, there is no way to
identify the version of the applications that the modeledusr whether the model passed the tests.

Actively monitoring model quality

A modeler must perform model verification, validation, agdting throughout the model lifecycle. The early detec-
tion and correction of errors reduces the total cost of pcodpa correct model. When the modeler leaves errors
uncorrected, the errors can cascade until it is too late angthing but restart the modeling process. Modeling tools
that continuously and actively search for model errors b@domain expert by reducing the need to diagnose and
debug the cause of an error. Ideally, a modeling tool detautisreports an error immediately after its introduction,
allowing the modeler to fix the error before it spreads to ofzets of the model. Balci [19] gives a comprehensive list
of-model.verification.and-validation techniques and thepl@pbility to the model lifecycle. Since the modeler can
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use many of these techniques only during a specific part afnibeel lifecycle, it is often necessary for a modeling
tool to combine several techniques to provide full coverage

Having a computer-understandable model test plan allowadtomation of model testing. Automatic test plan
evaluation encourages the modeler to perform testing megriéntly and the modeling tool can incorporate the test
plan into the continuously run tests for model quality [9pwever, automatic evaluation of a test plan has cost in terms
of the time that the modeler spends specifying the test piarttae time that the modeling tool spends executing the
test plan. Overstreet [110] notes that the cost of autonbegicplan evaluation can make this automation unattractive
even when model correctness is crucial.

The JigCell modeling environment has little support foriady monitoring the quality of a model. Although
the JigCell Comparator supports automatic test plan etialuahe modeler must explicitly instruct the application
begin model testing. Performing a test plan for a typicaldg@al model has significant cost. The JigCell applicagion
cannot execute a model test plan while the user is integdgtediting the model.

Diagnosing model errors with a knowledge base

Determining the reason that a model test fails and locajittie model fault is particularly difficult. Improving theik

of diagnosing or debugging the source of error in a modeliid.Ha general software programming, fault localization
is the most difficult part of debugging and requires extenkivowledge to perform [50]. For a domain expert working
on a model, this can result in an excessive expenditure @f tionrecting model errors.

The tenet of knowledge bases is that modelers generally dauild models to solve a particular problem and then
entirely discard those models. Instead, modelers can thesknowledge that they generated by building a model
in a domain by treating the creation of successive modelsramgoing process [48]. A knowledge base records
the experience gained by a domain expert or modeling andaiimii specialist when performing model diagnosis.
Another modeler or domain expert can then research thisrrgtion when attempting to build or modify a model.

Birta and Ozmizrak [31] describe using a knowledge base teigde new experiments and model tests. This pro-
vides similar support for model diagnosis while reducingtieed for the domain expert to construct a comprehensive
suite of model test cases.

The JigCell modeling environment originally planned to stwact a database of past modeling activities. Modelers
could search within this database for situations similathir current problem and discover what other modelers
attempted previously. However, the JigCell modeling emminent never incorporated archival storage or retrieval of
modeling activities. The cost of archiving the configuratitata and results is similar to, and in some cases in excess
of, the cost of performing those modeling activities ag&itareover, the design space of a typical biological model
is vast. It is unlikely that modelers encountered enouglilairaircumstances previously to give rational advice abou
how to solve a particular modeling problem. The JigCell miogeenvironment does not currently have any support
for diagnosing model errors with a knowledge base. Instézal JigCell modeling environment relies on making
model experimentation cheap to allow the modeler to quiekjylore many different ideas for fixing a model error.

Keeping historical records of model development and testip

Historical records of model development and testing preeidicial information about the modeling process. Keeping
a historical record assists with the credibility of a modad & useful for planning future modeling tasks. A modeling
tool adds information to the historical record wheneveredeler transforms, modifies, or tests the model. The
modeler can then use the historical record in support ofraated testing, which also helps the domain expert review
model verification, validation, and testing methods. Hgwnhistorical record makes the model more accessible to
experimentation. A historical record lists past experitaatone with a model and makes it easier to undo model
changes after the modeler detects an error.

WBCSim [62] is a simulation problem-solving environmentfmod-based composite models. The intended users
of WBCSim are manufacturers and wood scientists. Userstieonis® wood composite model, perform experiments
on the model, and receive visualizations of the experinteesalts. The addition of a historical record to WBCSim
improved usability by allowing searches and comparisonsast model experiments [128]. A database stores notes
from-the.modelermodelmodifications, simulation setu, simulation results.
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The JigCell modeling environment has minimal support farkag a historical record of model development and
testing. As Section 4.4.2 described, modelers can savesthdts of model tests in the JigCell Comparator for later
viewing and analysis. However, the JigCell Comparator oatyrds the result of a model test, discarding all other data
that the modeler may need to interpret the test results.ypardl biological models, a model test produces too much
data to permanently archive. Moreover, the other JigCalliegtions do not keep any records of model development
and testing. Modelers must manually record the model higiptest results that they feel are important.

Presenting multiple visualizations of models and model oytuts

Visualizations are graphical representations of modetsraadel results. Graphical model representations, such as
block diagrams, are useful for communicating the highdlesfationships in a model [120]. Animations and plots are
common examples of visualizations of model outputs. Giahiepresentations often combine with textual repre-
sentations. The graphical representation depicts thetateiof the model, and the textual representation fills loat t
details. Sanchez and Langley [118] present an examplehttirid modeling approach.

The use of visualizations improves understandability tsyinictively representing patterns that the modeler con-
siders important. Visualizations aid model verificatioalidation, and testing by making models and model results
more understandable and by clearly showing the incorrdeawier when the model is not working correctly [32].
Visualizations reduce the need for the domain expert toendisé technical and abstruse specification languages that
modeling and simulation specialists often use for modetsvéver, it is important to remember that the simplicity of
visualization can come from hiding important model detaf\spoorly chosen visualization may give the modeler a
misleading impression of the model.

One concern about providing multiple visualizations for adal is the expense of maintaining multiple model
representations. Modeling tools can avoid this expense awytaining a single model from which they generate
multiple presentations. Padmanaban, Benjamin, and Malit] [illustrate the use of a knowledge base to store
pertinent data about a model, which modeling tools can tteenta create different model views. This approach
prevents the introduction of inconsistencies between mageesentations. Otherwise, it is necessary to evaluate
whether the improvementto model understandability is imthré increased cost of development and execution. Nance,
Overstreet, and Page [104] report that modeling tools darirete the redundancy of multiple model representations
automatically in some cases, significantly improving theoeion time.

The JigCell modeling environment provides several meangfalizing models and model results, although
modelers make use of these capabilities rarely. Sectiodesdribed the visualization methods available in the Jig-
Cell Comparator, including CompareThe JigCell Model Builder uses the standardized SBML lagguto allow
modelers to work with the model in a spreadsheet form whilegusther modeling applications that have graphical
representations. Although both representations resitteeisame model file, there is substantial duplication betwee
the graphical and mathematical forms. The graphical fortmefmodel is fragile and does not automatically update
after changes to the mathematical model. The modeler mutifisesulting inconsistencies manually.

5.3 Collecting and Checking User Requirements

The remainder of this chapter discusses collecting uselinEagents and evaluates the JigCell modeling environment
using those requirements. As the name implies, user ragaints are the stated needs of the intended users. The
intended users of the JigCell modeling environment areolgiochl modelers that build large models of biochemical
reaction networks. The models that these modelers builolfdhe approximations that Section 2.5 described, making
the models suitable for description by ordinary differahBquations. Although the intended users of the JigCell
modeling environment are not necessarily expert bioldgitadelers, JigCell presently does not specifically focus on
supporting novice modelers. Supporting novice modelerdavaequire additional user requirements.

The primary means of collecting user requirements is towees users. The user requirements in this dissertation
come from interviews of the same modeling group as the aalgimodeling process in Section 3.1. Users initially
patticipated-in-an-unstructured-interview session in whingy discussed their concerns about software features. The
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development of the requirements specification was itexafifter each interview session, users received for comment
a requirements specification based on the needs that thegsaeal during the session.

This requirements specification consists of two types dfiiregnents. Feature requirements are qualitative require-
ments that specify a particular action that a modeling tboldd perform. Performance requirements are quantitative
requirements that specify a minimum capacity or limit for adaling tool.

Collecting user requirements is difficult because a requirs specification needs a well-defined scope and con-
sistent level of detail. The scope of this requirements i§ipation is the revised modeling process of Section 3.3,
which the JigCell modeling environment implements. Theref this dissertation states user requirements in terms
of the revised modeling process even though the user maydpeaified their requirements in terms of the JigCell
applications. The level of detail of this requirements ipeation is “features that correspond to significant model
actions”. An average feature requirement should corredpmat least several weeks of developer time to implement
but no more than several months. Therefore, a single feadgrgrement may aggregate several specific but small
requests by users. Conversely, a single challenging ugeest can lead to multiple feature requirements.

Benchmarking

This dissertation tests support for user performance remuénts through benchmarking. A benchmark is a well-
defined standard of measurement that an experimentalisepaatably apply to a software program to obtain a quan-
titative result. A user performance requirement consist llenchmark methodology that explains how to perform
the benchmark and a benchmark target that gives a threshatteptability for the benchmark result. The following
benchmark methodology and targets apply to all of the beacksrin this dissertation.

e A benchmark measures real elapsed times, with a resolution worse than one second.

e A benchmark program must not use more than 75% of the physieaiory of the machine and must not use
more than one gigabyte of physical memory regardless ofuiéable quantity of physical memory.

A benchmark program must not use more than one gigabyteloSgdace.

A benchmark program that produces an answer must produexpleeted correct answer.

e A benchmark program must not experience a program faulbdwi after the benchmark run.

A benchmark program must leave the modeling tool in a usainéition after the benchmark run.

A benchmark program must not degrade or disable the useféaoée or otherwise perform less work than
performing the equivalent operations through normal useraction.

This dissertation uses a single reference machine for peifig benchmarks. Table 5.2 gives the software config-
uration of the reference machine and Table 5.3 gives theA@aedconfiguration.

Table 5.2: Configuration of the test environment softwardtie benchmark reference machine.

Program JigCell version 6.0.5

Compiler IBM Jikes Java compiler version 1.22

Optimizer Sun Java HotSpot Client VM version 1.5.0.04-bfiked mode
Runtime Sun Java Runtime Environment SE version 1.5.004-b

Operating System  Microsoft Windows XP Service Pack 2

The reference machine ran benchmarks with the Intel procésgperThreading extensions enabled. There is
little measurable difference between running the bencksnaith the Intel HyperThreading extensions enabled and
disabled. The modeling tools use a single thread almostisixelly during each benchmark run.

Benchmarks used the high-performance system timer, whashal least microsecond resolution. The bench-
matks.configured.the- Java-runtime environment to termiredenchmark program after allocating more than 75%
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Table 5.3: Configuration of the test environment hardwargtfe benchmark reference machine.

Processor Intel Pentium 4 stepping D1
3.2 GHz clock speed
800 MHz front side bus speed
Cache 8 KB L1 data
12 KB L1 instruction
512 KB L2 unified
Memory 1 GB DDR2700 RAM
Disk 80 GB capacity
100 MB/s interface bandwidth
49.3 MB/s average transfer rate
19.2 ms access time

(768 MB) of the physical memory of the machine. The benchmesllts note the peak heap allocation size during the
benchmark run, taken observationally. Note that the peak ladlocation size is not necessarily the amount of mem-
ory that the benchmark requires as the Java runtime enveahoan defer reclaiming freed objects. Additionally, the
benchmark results estimate a lower bound on the heap atlacate by setting the heap allocation limit progressively
lower until the benchmark fails due to memory exhaustion.

5.4 User Requirements for Model Building

This requirements specification defines benchmark modetsrins of SBML Level 2 Version 1. However, model-
ing tools do not have to support SBML. Modeling tools thatso a different model representation format should
appropriately translate the benchmark models to theiag®mformat.

A model consists of a name, description, list of compartselit of chemical species, and list of chemical
reactions. The size of a benchmark model is the number of ida¢meactions. Each compartment has a unique
identifier, name, description, size, and topology. A benatinmodel has a single, three-dimensional compartment
with unit size. Each chemical reaction has a unique identifiame, kinetic formula, and parameters. The kinetic
formulas for the chemical reactions are simple mass actioetik formulas §;S; for the ith chemical reaction).
Reactions are irreversible. Each paramétes 1/(i + 2), has a unique identifier, name, description, and value. Each
chemical species has a unique identifier, name, descrjat@naining compartment, and initial amount. The initial
amount for every chemical speciesli§. The single compartment of the model contains all of the ¢balspecies.

Model Building Performance

(1) The model building tool should support a benchmark modataining at least 1000 chemical reactions.
Analysis: The model loading benchmark measures whether the JigCeleMRuilder supports a model. The JigCell
Model Builder supports a model if the loading time is lesstl380 seconds. The procedure for measuring model
loading performance is:

1. Create a test model containingchemical reactions,

2. write the test model to disk,

3. and read the test model from disk.

The benchmark time is the time to execute Step 3.

The JigCell Model Builder passes this benchmark. The timlead a model containing 1000 chemical reactions is
2.6 seconds, using between 32 MB and 66 MB of memory and 757 fkdBs& space. Figure 5.1 shows a graph
of the timing data interpolated between the measurementgohlthough parsing the model initially dominates the
benchmarktimesdetecting.conservation relations ininghsdominates as the model becomes larger.
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Figure 5.1: Time to load a model in the JigCell Model Buildgaimst the number of chemical reactions. The bench-
mark target is to load a model containing 1000 chemical reastwithin 300 seconds.

3

2.5 A

Time in seconds
—
Wi
.

0.5

0 T T T T T T T T T T T T T T T T T T T T
VU OO O A D O D VO D O DO DN O DD DD
PRI T TR RN
D R - S S M S I S CHEE S S M N

Number of chemical reactions

(2) The model building tool should support entering a chafmeaction in less than two minutes.
Analysis: The chemical reaction entry benchmark measures whethdigell Model Builder supports entering a
new chemical reaction. The JigCell Model Builder suppontegng a chemical reaction if the expended time is less
than 120 seconds for a model containing 200 chemical reectithe procedure for measuring chemical reaction entry
performance is:
Create a test model containingchemical reactions,
write the test model to disk,
read the test model from disk,
add chemical speci€$ + 1,
add chemical reactioN + 1,
add paramete¥ + 1,

N o g ks~ w DN R

and write the test model to disk.

The benchmark time is the cumulative times to execute StapoBigh Step 7.

The JigCell Model Builder does not pass this benchmark. Td@€ell Model Builder terminates abnormally while
executing the benchmark. As the previous version of theellg@odel Builder finished this benchmark successfully,
this defect is new. The previous version of the JigCell Mdlglder met this requirement.

Model Building Functionality

(3) The model building tool should support a standard ifitange language for representing models. Support of
a standard interchange language includes the ability t, tmat not necessarily display, any valid model using the
language and the ability to reject invalid models. The mdulglding tool must use the interchange language as its
native language for saving models.

Analysis: The JigCell Model Builder meets this requirement. Sectidhdescribed the exclusive use of SBML
Level2-\Version.1-by-the Jig€ell.Model Builder.
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(4) The model building tool should support displaying a niridiagram for the model. The model building tool
does not need to display the wiring diagram unless the ugeests one for a model.

Analysis: The JigCell Model Builder does not meet this requiremente JiyCell project previously planned to
integrate the Model Builder with another model buildinglttdwat supports wiring diagrams. However, the JigCell
Model Builder does not attempt this integration, which wbrdquire extensive development time.

(5) The model building tool should support highlightingas in the model while the modeler is working. A model
error includes definitions that the interchange languageaigpersist and definitions that will prevent simulation.

Analysis: The JigCell Model Builder does not meet this requiremente JlgCell Model Builder supported this
feature in a previous version. Section 4.5 described th€eligsBML Parser, which contains routines that verify
model elements. Supporting this requirement in the Jigi@etlel Builder requires calling the verification routines in
the JigCell SBML Parser. Changing the JigCell Model Builiecall these verification routines is a minor effort.

(6) The model building tool should support verifying thaetmodel structure is consistent. Model verification
includes checking that all references to model elements tefan element that exists in the model. The references
that the model building tool needs to be check include refege to compartments, chemical species, rules, and
parameters in SBML. Additionally, model verification indkes checking for invalidly structured models, such as a
cycle between compartment containments.

Analysis: The JigCell Model Builder does not meet this requiremente JlyCell Model Builder supported this
feature in a previous version. The JigCell Model Builderginet support model verification for a few types of model
elements, such as units. Changing the JigCell Model Butllgerify all types of model elements is a minor effort.

(7) The model building tool should support describing medeith ordinary and stochastic differential equations.
Specification of ordinary differential equations requicesistructing the right-hand side of the equation. The model
building tool must not have unreasonable limits on the nurabsize of terms on the right-hand sides of the differential
equations. Specification of stochastic differential emunstrequires an additional noise function for the equation

Analysis: The JigCell Model Builder does not meet this requirementh@lgh the JigCell Model Builder supports
ordinary differential equations, neither the Model Buildwr the SBML language supports stochastic differential
equations. Supporting stochastic differential equatieitis an SBML model is a major effort.

(8) The model building tool should support creating diffetial equations from the chemical reactions and chemical
reaction kinetics of the biochemical reaction network.
Analysis: The JigCell Model Builder meets this requirement. The JigRedel Builder implements the conversion
process in Section 2.4.1 for constructing ordinary diffiad equations from a biochemical reaction network.

(9) The model building tool should support displaying thedeleequations. Possible display formats for equations
include plain-text mathematics, rich-text mathematichsas X, and program code.
Analysis: The JigCell Model Builder meets this requirement. Figui®idustrated the user interface in the JigCell
Model Builder that displays the system of equations.
(10) The model building tool should support detecting covestion relations in the biochemical reaction network.

Analysis: The JigCell Model Builder meets this requirement. As Secti.2 described, the JigCell Model Builder
implements the algorithm in Section 2.4.2 for detectingableservation relations in a biochemical reaction network.

(11) The model building tool should support importing moftabments into the current model. Model fragments
are packaged models or components of models. Importatiamnoddel fragment requires resolving the connection
points between the current model and model fragment.

Analysis: The JigCell Model Builder does not meet this requiremenp@uting model composition requires consid-
erable user interface support in the JigCell Model Buildéareover, model composition may require modifications
to.the.SBML-language to.support-merging model element difirstfrom separate models.
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(12) The model building tool should support automating tipui of similar types of chemical reactions. The model
building tool must support selecting from a catalog of kin&rmulas that the user can customize. The model building
tool must support basic editing functionality, such as capy, and paste.

Analysis: The JigCell Model Builder meets this requirement. Sectighdescribed entering chemical reactions into
the JigCell Model Builder, including reusing previous défams of chemical reactions and kinetic formulas.

(13) The model building tool should support creating midtimodel views that hide levels of detail. A model
view collapses a user-defined collection of chemical sgecigemical reactions, or compartments to a single point or
opaque box. The model building tool must display refereme@sodel elements within a model view.

Analysis: The JigCell Model Builder does not meet this requiremenis Llinlikely that the JigCell Model Builder
could support this requirement without first supporting elamposition.

Table 5.4: Current support for model building in the JigQdtbdel Builder. The JigCell modeling environment
supports six of the requirements and is close to suppotimgtadditional requirements.

# Supported < 4 weeks < 4 months > 4 months
1 °

2 °

3 °

4 °
5

6

7 .

8

9

10

11 )
12 °

13 .

5.5 User Requirements for Model Execution

A run file consists of a model file name, basal file name, simulaame, simulator control settings, and list of runs.
The size of a benchmark run file is the number of runs. The bmadhmodel file contains 200 chemical reactions, and
the basal file duplicates the parameter and initial comlieues in the model file. The simulator is freely selectable
and the simulator control settings are the default valueshfat simulator. Each run has a unique identifier, name,
description, and changes to the parameters and initialitonsl The value of théth model parameter in thghe run
is1/(i*j + 2), starting withi = 0 andj = 1. The initial amount of théth model chemical species in thh run is
1/(i + j + 2), starting with; = 0 andj = 1.

Model Execution Performance

(14) The model execution tool should support a benchmarKileicontaining at least 10000 runs. The number of
runs is typically larger than the number of chemical reaxgim the model.

Analysis: The run file loading benchmark measures whether the Jig@alNRanager supports a run file. The JigCell
Run Manager supports a run file if the loading time is less 8@ seconds. The procedure for measuring run file
loading performance is:

1. Create a test model containing 200 chemical reactions,
2. write the test model to disk,
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3. create atest run file containidgruns,
4. write the test run file to disk,

5. and read the test run file from disk.

The benchmark time is the time to execute Step 5.

The JigCell Run Manager passes this benchmark. The timeatbdaun file containing 10000 runs is 0.6 seconds,
using between 8 MB and 18 MB of memory and 3456 KB of disk sp&tgure 5.2 shows a graph of the timing data
interpolated between the measurement points.

Figure 5.2: Time to load a run file in the JigCell Run Managexiast the number of runs. The benchmark target is to
load a run file containing 10000 runs within 300 seconds.
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(15) The model execution tool should support entering amdass than five minutes.
Analysis: The run entry benchmark measures whether the JigCell Rura@garsupports entering a new run. The
JigCell Run Manager supports entering a run if the expenideslis less than 300 seconds for a run file containing
2000 runs. The procedure for measuring run entry perforeenc
Create a test model containing 200 chemical reactions,
write the test model to disk,
create a test run file containidgruns,
write the test run file to disk,
read the test run file from disk,
add runN + 1,
and write the test run file to disk.

N o g s~ wDNh R

The benchmark time is the cumulative times to execute Stapobigth Step 7.

The JigCell Run Manager passes this benchmark. The timetéo @mun into a run file containing 2000 runs is 0.5
seconds, using between 8 MB and 15 MB of memory and 934 KB &f siisice. Figure 5.3 shows a graph of the
timing.datainterpolated.between.the measurement points.
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Figure 5.3: Time to enter a run into a run file in the JigCell Rtanager against the number of runs. The benchmark
target is to enter a run into a run file containing 2000 runfiwiB00 seconds.
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(16) The model execution tool should support executing@lsirun for a preliminary model in less than one minute.
Analysis: The run execution benchmark measures whether the JigCelMRunager supports executing a run for a
preliminary model. The JigCell Run Manager supports exeguw run for a preliminary model if the expended time
is less than 60 seconds for a run file containing 2000 runs pideedure for measuring run execution performance is:

1. Create a test model containing 200 chemical reactions,
write the test model to disk,
create a test run file containidgruns,
write the test run file to disk,
read the test run file from disk,

ook~ wDN

and execute the first run.

The benchmark time is the cumulative times to execute Stapobigh Step 6.

The JigCell Run Manager passes this benchmark. The timesttuéxa run for a run file containing 2000 runs is 10.0
seconds, using between 8 MB and 12 MB of memory and 1015 KBsif sjjace. Figure 5.4 shows a graph of the
timing data interpolated between the measurement pointthig\number of runs, the time to perform the simulation

entirely dominates the benchmark time. Although the JigReh Manager currently supports executing runs, there
is no way to access this command from the user interface. tiecéigCell Run Manager supplies a user interface for
this functionality, the benchmark time will likely increaslightly.

(17) The model execution tool should support changing deipgrameter or initial condition value in less than one
minute. Modelers make frequent changes to parameter aial oundition values during parameter twiddling.

Analysis: The run modification benchmark measures whether the JigRtgllManager supports changing a single
parameter or initial condition value. The JigCell Run Masegupports changing a single parameter or initial condlitio

value if the expended time is less than 60 seconds for a rundiléaining 2000 runs. The procedure for measuring
run modification performance is:

1. Create.a-test.model.containing 200 chemical reactions,
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Figure 5.4: Time to execute a run in the JigCell Run Managairesyj the number of runs. The benchmark target is
to execute a run in a run file containing 2000 runs within 6®ads. Invoking and running the simulation program
dominates the benchmark at this number of runs, causing i, samlom fluctuation in the time spent.
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write the test model to disk,

create a test run file containidgruns,

write the test run file to disk,

read the test run file from disk,

set the parameter for the first chemical reaction in therfirsto 0.0,

set the initial condition for the first chemical specieghie first run to 0.0,

© N o g~ Db

and write the test run file to disk.

The benchmark time is the cumulative times to execute Stapobigh Step 8.

The JigCell Run Manager passes this benchmark. The timeatogeha single parameter or initial condition value in
a run file containing 2000 runs is 0.5 seconds, using betwd#B 8nd 11 MB of memory and 934 KB of disk space.
Figure 5.5 shows a graph of the timing data interpolated &éetvthe measurement points.

Model Execution Functionality
(18) The model execution tool should support multiple sabais. Supporting a simulator requires registering the

simulation program with the model execution tool and quagythe simulator about its control settings.

Analysis: The JigCell Run Manager meets this requirement. Sectioddsbribed the Simulator API that supports
registering simulators and querying simulators about tbemtrol settings, and Section 4.3 described the use of the
Simulator API by the JigCell Run Manager.

(19) The model execution tool should support configuringgator control settings. The model execution tool must
display the known control settings for a simulator and stitkie control setting changes for a run within the run file.

Analysis: The JigCell Run Manager meets this requirement. Figurehb®sd the user interface for editing simulator
controlsettings.in-the Jig€ell.Run.Manager after seledtirmgXPPAUT simulator.
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Figure 5.5: Time to change a single parameter or initial @@rdvalue in a run file against the number of runs. The
benchmark target is to change a single parameter or indiadlition value for a run in a run file containing 2000 runs
within 60 seconds.
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(20) The model execution tool should support validating ghability of the model and simulator configuration.
Simulators cannot accurately execute every model. Additly, some simulation programs further restrict the class
of suitable models according to the simulator control sgi The model execution tool must check the model for
suitability prior to execution.

Analysis: The JigCell Run Manager does not meet this requirement. Bl 3anguage does not support describing
the simulation features that a model needs, and the SinmA&bdoes not support describing the simulation features
that a simulator provides. Supporting this requirementldaaquire significant changes to the SBML language,
Simulator API, and JigCell Run Manager.

(21) The model executiontool should support inheritangeoameters and initial conditions. Updates to a parameter
or initial condition value propagate to all of the derivedsuhat do not explicitly override the value for that setting

Analysis: The JigCell Run Manager meets this requirement. Sectiodes8ribed constructing ensembles of runs in
the JigCell Run Manager that inherit parameter and initaldition changes between runs.

(22) The model execution tool should support highlightimpes in the configuration while working. An error
includes a missing or illegal value for the model, simulagdmulator control settings, basal parameters and initial
conditions, or parameter and initial condition changesmfra

Analysis: The JigCell Run Manager does not meet this requirement. igi@el Run Manager could easily validate
the model, simulator, basal parameters and initial comkti and parameter and initial condition changes and apply
highlighting to those portions of the user interface. Aligh the Simulator API provides an indication of the valid
range of simulator control settings, the JigCell Run Manages not make use of this information.

(23) The model execution tool should support updating thdite when the model file changes. The model execution
tool must propagate changes to the model to all runs thahasertodel.
Analysis: The JigCell Run Manager meets this requirement. The Jig-iell Manager rereads the model each time
a run needs model information.

(24) The model execution tool should support importing pater and initial condition sets from the model. When
a model provides parameter or initial condition values,rtfeglel execution tool must permit the user to transfer the
values.in-the.modelto.the.basal.parameters and initial tiondi
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Analysis: The JigCell Run Manager meets this requirement. As Sect®méntioned, the JigCell Run Manager has
a command that creates a basal file from the parameter arad @uihdition values in the model.

(25) The model execution tool should support executingglsisimulation run and displaying its output. The model
execution tool does not need to support executing runsdiiatdiidation. The model execution tool must display the
results of a run in a tabular or graphical form for the useetoaw.

Analysis: The JigCell Run Manager does not meet this requirement. @l Run Manager supported this
feature in a previous version. The JigCell modeling enviment includes libraries for executing simulation runs and
displaying plots, which Section 4.5 described in detailpfgarting this requirement in the JigCell Run Manager user
interface is a minor effort.

Table 5.5: Current support for model execution in the Jig®ein Manager. The JigCell modeling environment
supports nine of the requirements and is close to suppartirgadditional requirements.

# Supported < 4 weeks < 4 months > 4 months

14
15
16
17
18
19
20 .
21 .

22 .

23 .

24 .

25 .

5.6 User Requirements for Model Analysis

An experiment set is a collection of experiments. The sizaroéxperiment set is the number of experiments. Each
experiment has a unique identifier, name, experimentakeaten, type, and description. The experimental observa-
tion is four observations of a two-variable time series. e identifies the experimental observation as a timeserie
and names the variables.

A transform set is a collection of transforms and a mappimgfion from experiment names to transforms. The
size of a transform set is the number of mappings from exparimames to transforms. Each transform has a unique
identifier, name, and procedural description. The procadiescription is a program built from primitive transforms
including the control settings that the primitive transfisruse and a reference to the transforms that supply inpet. Th
transform procedure for each named experiment consistgogbtimitive transforms and requires one parameter. The
first transform receives input from the second transform;sicond transform does not require input. The output of
the transform procedure is a time series in the same forntatssxperimental observation.

An objective set is a collection of objective functions andapping function from experiment names to objective
functions. The size of an objective set is the number of magpirom experiment names to objectives. Each objective
function has a unique identifier, name, and procedural gesm. The procedural description is a program that
specifies the objective function code and the control ggtithat the objective function code uses. The objective
procedure for each named experiment requires one parameter

Model Analysis Performance

(26) The model analysis tool should support an experimert@gaining at least 10000 experiments. The number
of-experiments.typically-is.similar.to the number of runs.
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Analysis: The experiment set loading benchmark measures whetheigthelUComparator supports an experiment
set. The JigCell Comparator supports an experiment se¢ ifoding time is less than 300 seconds. The procedure
for measuring experiment set loading performance is:

1. Create a test experiment set containMgxperiments,

2. write the test experiment set to disk,

3. and read the test experiment set from disk.

The benchmark time is the time to execute Step 3.

The JigCell Comparator passes this benchmark. The timeatbdo experiment set containing 10000 experiments is
4.8 seconds, using between 16 MB and 31 MB of memory and 5010fkisk space. Figure 5.6 shows a graph of
the timing data interpolated between the measurementgoint

Figure 5.6: Time to load an experiment set in the JigCell Carar against the number of experiments. The bench-
mark target is to load an experiment set containing 1000@réxgnts within 300 seconds.
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(27) The model analysis tool should support a transform sataining at least 2000 distinct transforms. Each
different experimental data format needs its own transf@xdditionally, some experimental protocols require the us
of a specialized transformation procedure.

Analysis: The transform set loading benchmark measures whethergelliComparator supports a transform set.
The JigCell Comparator supports a transform set if the laatime is less than 300 seconds for an experiment set
containing 2000 experiments. The procedure for measuramgtorm set loading performance is:

Create a test experiment set containing 2000 experiments

write the test experiment set to disk,

create a test transform set containivigransforms,

write the test transform set to disk,

read the test experiment set from disk,

o g~ w NP

and.read.the test.transform.set from disk.

www.manaraa.com



86 CHAPTER 5. SOFTWARE REQUIREMENTS FOR THE JIGCELL MODELINGNEIRONMENT

The benchmark time is the time to execute Step 6.

The JigCell Comparator passes this benchmark. The timeatbddransform set containing 2000 distinct transforms
is 4.9 seconds, using between 16 MB and 21 MB of memory and BBI1& disk space. Figure 5.7 shows a graph of
the timing data interpolated between the measurementgoint

Figure 5.7: Time to load a transform set in the JigCell Corafmragainst the number of transforms. The benchmark
target is to load a transform set containing 2000 distirazstg¢forms within 300 seconds.

6

\

Time in seconds
w
Il

S}

\

S o o S
» ® N S

N

\] N\
S
N w

S
N N

Number of transforms

(28) The model analysis tool should support an objectivecsataining at least 2000 distinct objective functions.
Each different experimental data format needs its own élbgtunction.

Analysis: The objective set loading benchmark measures whetherd@elliComparator supports an objective set.
The JigCell Comparator supports an objective set if theitmatime is less than 300 seconds for an experiment set
containing 2000 experiments. The procedure for measubigrtve set loading performance is:

Create a test experiment set containing 2000 experiments

write the test experiment set to disk,

create a test transform set containi¥igransforms,

write the test transform set to disk,

create a test objective set containiFgpbjectives,

write the test objective set to disk,

read the test experiment set from disk,

read the test transform set from disk,

© ® N o 0k~ wDdh P

and read the test objective set from disk.

The benchmark time is the time to execute Step 9.

The JigCell Comparator passes this benchmark. The timeathdo objective set containing 2000 distinct objective
functions is 1.9 seconds, using between 16 MB and 25 MB of nmgmared 5536 KB of disk space. Figure 5.8 shows
a-graph.of-the timing.data-interpolated between the measnepoints.
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Figure 5.8: Time to load an objective set in the JigCell Corafma against the number of objective functions. The
benchmark target is to load an objective set containing 20tthct objective functions within 300 seconds.
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(29) The model analysis tool should support entering anmx@atal observation in less than two minutes.

Analysis: The experiment entry benchmark measures whether the JiGGelparator supports entering an exper-
imental observation. The JigCell Comparator supportsrengen experimental observation if the expended time is
less than 120 seconds for an experiment set containing 2q@iments. The procedure for measuring experiment
entry performance is:

1. Create a test experiment set containMgxperiments,
write the test experiment set to disk,
read the test experiment set from disk,

add experimeny + 1,

g ks D

and write the test experiment set to disk.

The benchmark time is the cumulative time to execute Stepdigh Step 5.

The JigCell Comparator passes this benchmark. The timetéo @an experimental observation into an experiment set
containing 2000 experiments is 2.4 seconds, using betw&¢B 8nd 15 MB of memory and 997 KB of disk space.
Figure 5.9 shows a graph of the timing data interpolated detvihe measurement points.

(30) The model analysis tool should support configuring amamson in less than five minutes. The configuration
time does not include the time spent programming transfpoijective functions, or data types.

Analysis: The experiment configuration benchmark measures whetbdiglell Comparator supports configuring a
comparison. The JigCell Comparator supports configurimgnaparison if the expended time is less than 300 seconds
to configure a comparison with an experiment set contain®P@02experiments, a transform set containing 2000
distinct transforms, and an objective set containing 20806ttt objective functions. The procedure for measuring
experiment configuration performance is:

1. Create a test experiment set containgxperiments,

2. write the test experiment set to disk,

3. Createatesttransform.set.containiMg- 1 transforms,
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Figure 5.9: Time to enter an experimental observation int@xperiment set in the JigCell Comparator against the
number of experiments. The benchmark targetis to entereremental observation into an experiment set containing
2000 experiments within 120 seconds.
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write the test transform set to disk,

create a test objective set containiiig- 1 objectives,
write the test objective set to disk,

read the test experiment set from disk,

read the test transform set from disk,

© o N oA

create transfornv,

10. add transfornV to experimentV,

11. write the test transform set to disk,
12. read the test objective set from disk,
13. create objectivéy/,

14. add objectiveV to experimentV,

15. and write the test objective set to disk.

The benchmark time is the cumulative time to execute Stepotith Step 15.

The JigCell Comparator passes this benchmark. The timertfigtme a comparison with an experiment set con-
taining 2000 experiments, a transform set containing 206indt transforms, and an objective set containing 2000
distinct objective functions is 20.9 seconds, using betv&MB and 35 MB of memory and 5536 KB of disk space.

Figure 5.10 shows a graph of the timing data interpolatedéen the measurement points.

Model Analysis Functionality

(31) The model analysis tool should support dividing experital observations into multiple pieces. An experimen-
tal observation is frequently a collection of data, such &iga series or multiple related observations. The model
analysis tool must support complex data types that allowpetident addressing of each scalar element.

Analysis: The JigCell Comparator meets this requirement. Sectiorl 4dd Section 4.5 described the list-of-lists
formatthatthe JigCell.Comparator uses to represent congala types for experimental observations.
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Figure 5.10: Time to configure a comparison in the JigCell Garator against the number of experiments. The
benchmark target is to configure a comparison with an expmrireet containing 2000 experiments, a transform
set containing 2000 distinct transforms, and an objecteantaining 2000 distinct objective functions within 300
seconds.
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(32) The model analysis tool should support using both owaradl external experimental observations. Owned
experimental observations are observations for which tbdahanalysis tool has control of the storage. External
experimental observations are observations for which gnogram independent of the model analysis tool has control
of the storage. The model analysis tool must make the consomgf owned and external experimental observations
transparent to the user.

Analysis: The JigCell Comparator meets this requirement. The JigCathparator supports executing code while
loading an experiment set. The code for an experiment setefarence external experimental observations, making
those experimental observations available as if the exyaari set stored the experimental observations directly.

(33) The model analysis tool should support referencesereperimental observations that refer back to source
information.

Analysis: The JigCell Comparator meets this requirement. The forovattperimental observations in the JigCell
Comparator includes a field where the user can enter refeiafarmation. Figure 4.9 shows an example of the user
using this field to record literature references.

(34) The model analysis tool should support assigning typesxperimental observations, transform inputs and
results, and objective function inputs. The model analigi$ must allow the user or code author to specify the data
type, including complex data types if the model analysi$ sopports that feature. Complex data types must support
a type for each scalar value in the experimental observation

Analysis: The JigCell Comparator meets this requirement. Experialefata, transforms, and objective functions
have types that describe their format. Figure 4.9 shows\thkié Type’ column that declares the data type for a
comparison. Section 6.2.1 gives an example of assigningitfprmation to complex data types.

(35) The model analysis tool should support highlightinggterrors while the user works. A type error occurs when
the experimental observation, transform, or objectiveefiom does not match the declared type.

Analysis: The JigCell Comparator meets this requirement. Figure ghblvs the JigCell Comparator highlighting
the ‘Value Type’ column of a comparison to indicate a typ®erin that example, the ‘MPF activation/inactivation’
experimenthas-a.declared.type-MPF thresholds’ but thectibigefunction ‘WOSS’ expects a time series.
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(36) The model analysis tool should support independemtitiefi of the experimental observations, transforms, and
objective functions. The definitions of transforms and otije functions, including control settings and sourcee;od
must reside separately from experimental observations niddel analysis tool must connect transforms and objective
functions to experimental observations without relyingaentifiers that derive from user-controllable properties

Analysis: The JigCell Comparator meets this requirement. The JigQathparator stores experimental observations,
transform, objective functions, and program code sepigratach experimental observation, transform, and objecti
function has a randomly-generated globally unique idemtfbr cross-referencing.

(37) The model analysis tool should support updating t@ns$ that perform runs when the run file changes. The
model analysis tool must propagate changes to the run filk taasforms that use those runs.

Analysis: The JigCell Comparator meets this requirement. The JigGamthparator rereads the run file each time a
transform needs information about a run.

(38) The model analysis tool should support unattendedutieec An error in the execution of one transform or
objective function must not prevent the execution of indefent transforms and objective functions. The model
analysis tool must monitor progress and display progrdesiration and an error report to the user.

Analysis: The JigCell Comparator meets this requirement. Users dantsegroup of comparisons that the JigCell
Comparator will execute in batch mode. The JigCell Compaudisplays the batch progress and provides an error log
that records exceptional conditions.

(39) The model analysis tool should support defining a namedmof comparisons. Biological modelers frequently
rely on particular collections of comparisons to give anyetest of model fitness during parameter twiddling. The
model analysis tool must allow the user to identify a groupahparisons, give that group of comparisons a name,
and persist storage of these named groups across prograionses

Analysis: The JigCell Comparator does not meet this requirementofitjh users can select groups of comparisons,
the JigCell Comparator does not support giving names tetgesups and does not record the groups for future use.
The experiment set file format can store the membership afraxgntal observations in groups, and adding support
for groups to the JigCell Comparator user interface is a maffort.

(40) The model analysis tool should support user-definetstoams, objective functions, and data types. It is un-
reasonable to expect that a modeling environment can sappiynprehensive set of transforms, objective functions,
and data types that will satisfy all users. New experimeetainiques and observations require the creation of novel
data structures and analysis procedures. The model antdgsimust support adding new data types, transforms, and
objective functions without requiring recompilation.

Analysis: The JigCell Comparator meets this requirement. At run titme JigCell Comparator loads a user-supplied
list of independent program code modules, which can incdilzde types, transforms, and objective functions. Allen [5]
describes the process for creating new data types, transfand objective functions for the JigCell Comparator.

5.7 Other User Requirements

System Requirements

(41) The software system should support constructing anpirehry model in less than five days. A preliminary
model is the initial testable implementation of a modeliggdthesis, containing 5% of the maximum supported num-
ber of chemical reactions and 1% of the maximum supportedoeusrof runs, experimental observations, transforms,
and objective functions. A preliminary model does not supparameter estimation. Building a preliminary model
does not include time spent programming transforms, akigfiinctions, or data types.

Analysis: The JigCell modeling environment meets this requiremeinthd user has an existing wiring diagram,
simulation runs, and experimental observations, therriagtéhis information into the JigCell modeling environnien
is straightforward. Modelers have entered models with ntba@m 100 chemical reactions, runs, and experimental
observations within one day.
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Table 5.6: Current support for model analysis in the JigCelinparator. The JigCell modeling environment supports
fourteen of the requirements and is close to supporting ddéianal requirement.

# Supported < 4 weeks < 4 months > 4 months

26
27
28
29
30
31
32
33
34
35
36
37
38
39 .
40 °

(42) The software system should support organizing a wgrkiodel over three or more years. A working model
has 20% of the maximum supported numbers of chemical reestimns, experimental observations, transforms,
and objective functions. A working model supports paramegtimation and includes data files, historical model
development information, and custom modules for trans§phjective functions, and data types.

Analysis: The JigCell modeling environment does not meet this requérg. Although Section 4.6 described an
application for managing projects and project data, th€diigmodeling environment does not attempt to support
project management. The JigCell modeling environmentiregthat users organize their own data.

Table 5.7: Current support for system requirements in tg€e&li modeling environment. The JigCell modeling
environment supports one of the requirements.

# Supported < 4 weeks < 4 months > 4 months
41 °
42 °

Model Tuning Requirements

(43) The model tuning tool should support configuring a pat@mestimation run in less than one day.

Analysis: The experimental tool for parameter estimation does not théerequirement. Converting the data files
from the JigCell modeling environment for use with paramestimation requires considerable manual processing.
Moreover, the parameter estimation tool cannot use thefwams and objective functions from the JigCell Compara-
tor, requiring the user to program new modules.

(44) The model tuning tool should support unattended ex@tufn error in the execution of a run must not prevent
the execution of independent runs. The model tuning tookmasitor progress and display progress information and
an error report to the user.

Analysis: The experimental tool for parameter estimation meets #tgsirement. The parameter estimator runs
unattended until the program terminates or meets the sigmpiteria that the user supplied. The parameter estimator
logs execution results for later viewing.
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(45) The model tuning tool should support returning founthpzeters to other tools. After a successful parameter
estimation run, there are new values for each of the freenpetexs. The model tuning tool must support inserting
parameter values found during parameter estimation intsallile.

Analysis: The experimental tool for parameter estimation meets #gsirement. Although the parameter estimator
does not create basal files, the experimental tools inclodigts that extract basal files from the parameter estimatio
execution log.

(46) The model tuning tool should support weighting the expental observations. Modelers associate a weight
with each experimental observation that scales the olgefttnction score to indicate their confidence in the acgurac
of the observation. If the model analysis tool uses a corhlgadbjective function that defines these weights, then the
model tuning tool must support importing the weighting daden the model analysis data files.

Analysis: The experimental tool for parameter estimation meets #égjgirement. The parameter estimator multiplies
each objective function score with a scalar weight. ThealVarodel score is the sum of these products. The parameter
estimator does not import weights from the JigCell Compmardita files because the objective functions in the JigCell
Comparator do not define suitable weights.

Table 5.8: Current support for model tuning in the experitaktools. The JigCell modeling environment does not
currently include the experimental tools as part of the daiadh distribution. The experimental tools support three of
the requirements.

# Supported < 4 weeks < 4 months > 4 months
43 °

44

45

46
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Chapter 6

Case Study of a Budding Yeast Model

The cell division cycle is a central biological process tthiatates how a cell grows and replicates [99, 108]. Misreg-
ulation of the cell cycle process leads to serious diseasggell death. As Chapter 2 described, this vital process
is highly conserved across eukaryotic organisms [107].Idgists have previously elucidated the cell cycle control
system in budding yeasSéccharomyces cerevisjda great detail [93, 105]. Due to the highly-conserved naiof
the process, biological modelers can apply the knowledagiey gain about budding yeast to many organisms.

The budding yeast cell cycle is a series of several phasesdgpeats endlessly. The cell spends a majority of its
time in interphase, the long interval between occurrentestosis. A newly born cell starts in the G1 phase. During
the G1 phase, the cell acquires resources and grows umtldine suitable conditions for replication. Cells that aatnn
commit to replication wait in a resting state until the enwvimental conditions improve.

After reaching a viable size for replication, the cell triiogs to the S phase. During the S phase, the cell syn-
thesizes a new copy of its DNA. After the completion of DNA 8yesis, the cell continues to grow until it reaches a
mass of approximately twice its birth size. This phase, kmag/the G2 phase in the standard cell cycle, is generally
uninteresting in budding yeast. However, the cell soonheathe end of interphase and begins mitosis, which is the
most physically complex portion of the cell cycle.

Mitosis, also called M phase, is the process of nuclear alhdigesion. By the end of mitosis, the cell will produce
a complete new copy of itself. At the start of mitosis, thelaacmembrane breaks down and a mitotic spindle forms.
Then, the cell enters metaphase, in which the duplicatedgnehsomes align themselves along the mitotic spindle.
Next, the cell passes through anaphase and enters telofbaseg this period, the pairs of chromosomes separate
and move to the ends of the mitotic spindle, where new nuekease forming. Finally, the cell pinches until the mass
of the cell divides. After division, the two cells are agairtihe G1 phase.

Modelers in the Tyson laboratory have built mathematicatlet® of the budding yeast cell cycle control system
that attempt to reproduce and explain the temporal evalwtf@ell growth and division using the modeling processes
that Chapter 3 described. These modelers then want to tetida proposed biological mechanism by comparing the
numerical solutions of their differential equations witletobserved cellular behavior in the laboratory. Experiialen
ists have made more than0 phenotypic observations of budding yeast mutant straimsnkvith a computer solving
the regulating equations, modelers find that evaluating @efoy hand is tedious and error-prone.

Chapter 4 introduced the JigCell modeling environment$higports automated evaluation of biological models.
Chapter 5 continued examining JigCell and analyzed thehilitges of the modeling environment by comparing the
features that JigCell provides with the features that merdeheed and request. The present chapter also aims to
examine JigCell and analyze the capabilities that JigQeNides as a modeling environment. However, instead of
examining JigCell from a requirements perspective, thsptér examines JigCell from an application perspective.
The focus of this chapter is to apply JigCell to a real biatajimodel and quantitatively measure the efficacy of
JigCell for the task of computerized model evaluation.

This chapter presents a case study applying JigCell to a Infmrdzell cycle control in budding yeast. Section 6.1
introduces the biology behind the budding yeast model anthsarizes its mathematical structure. Section 6.2 de-
scribes theimplementation.of the.automated model evalugtiocedure in JigCell. As Section 4.4 discussed, a model
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evaluation procedure requires experimental data, a daiaformation procedure that extracts information eqaival

to the experimental data from the model, and an objectivetion that measures the distance between the experi-
mental data and the output of the data transformation. @e6til.2 categorizes the mutant strains that the automated
model evaluation procedure uses for experimental obsensand Section 6.2 provides the format for the experi-
mental data, a data transformation procedure, and an atgdghction. Finally, Section 6.3 presents the resultdef t
case study. Section 6.3 compares the results of an expedleraging the manual model evaluation procedure that
Section 3.1 described with an equivalent automated moe@dhiation procedure in JigCell.
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6.1 Budding Yeast Model

Chen et al. [41] previously developed a model of the buddemgsy cell cycle. Figure 6.1 shows their wiring diagram
for the biochemical reaction network that regulates DNAtkgsis, bud emergence, and mitosis in budding yeast.

spindle defect SBF

Figure 6.1: Wiring diagram for the budding yeast model byi€he
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As Section 3.1 mentioned, modelers sometimes simplify tlimgvdiagram by omitting portions of the model
and-using-abstractions--Figure-6:1 heavily employs sudintqoes. For example, Chen uses different shapes to
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distinguish the forms of chemical species suchkagl, Pdsl, CKI, Cdc20, andCdhl. Shading and silhouette
indicates the dissociation of chemical species underqaati conditions. In some places, a text description of a
function stands in the place of that part of the model. Funttuge, Chen combined several chemical species together
to simplify the model. CIn2 in the model represents botfinl and Cln2 in the cell. Similarly,Clb5 represents
both Clb5 andClb6, andClb2 represents botllb1 andClb2. Although Chen does not formalize or describe these
abstractions in detail, understanding the abstractioesdential to understanding the model.

Figure 6.2 shows part of this same budding yeast model inigiigzell Model Builder. The version of the budding
yeast model in the Model Builder consists®ff chemical reaction equations. As Section 4.2 mentionedyibeel
Builder only supports irreversible chemical reactions.wdwer, since nearly all of the pairs of chemical reactions
proceed at asymmetrical rates in the budding yeast modekgstriction is rarely a problem.

Figure 6.2: Some chemical reactions for the budding yeasiehaf Figure 6.1 in the JigCell Model Builder.

< C:\Program Files\JigCell\buddingyeast\yeast.sbml ==
File Edit Help
Reactions | Functions | Rules | Compartments | Species | Parameters | Events | Units | Conservation Relations | i |
Name [ Reaction [ Type [ Exquation [ Fast | Notes ]

Graowth = MASS Mass Action (MUrMASS) ] -
Synthesis of CLNZ = CLMNZ Mass Action ((KSN2'+(ksn2*SBF)) "MASS) [m] f
Degradation of CLNZ CLNZ-> Mass Action (KHN2"CLNZ) [H]
Synthesis of CLEZ - CLB2 Mass Action ((ksh2'*(ksh2"MCM1)"MASS) [} E
Degradation of CLB2 CLB2 > Mass Action (VdbZ"CLE2) [}
Synthesis of CLEA -~ CLBA Mass Action ((ksh&'*(ksh&™SBF])"MASS) [m}
Degradation of CLBS CLBS -» Mass Action (Vilb&*CLES) [m]
Synthesis of 51C1 - 5IC1 Mass Action (ka1 +{ksc1 SWISY) [m]
F ion of SIC1 SIC1 -= SICIP Mass Action (kpel *SIG1) ]
Dephosphorylation of 5I1C1 SICIP-= SIC1 Mazs Action (pReT*SICIP) ]
Fast Degradation of SICTP SICIP-= Mazs Action (ki 3c1*5ICTP) ]
Assoc, of CLB2 and SIC1 CLB2 + 5IC1 -~ C2 Mass Action ((kash2*CLE2y*SICT) ]
Dissoc. of CLB2/SIC camplex C2-= CLB2 +5IC1 Mass Action ikelib2*G2) ]
Assoc. 0f CLBS and SICT CLBS + 5IC1 -= C5 Mass Action i(kash & CLBS)™SIC1) ]
Dissoc. of CLBS/SICT Cf-= CLBA + 8IC1T Mass Action (ktlib5*Ca) ]

ol 1 oTC2 C2--CaP Mass Action (VKpe1*C2) [} o
Dephospharylation of C2P CaP-=C2 Mass Action (Vppc1CaF) [} ~

—c=

6.1.1 Mathematical Model

The Model Builder translates the biochemical reaction oekvinto a system of differential-algebraic equations with
36 differential equations. There are seven algebraic coasiervrelations, of which the modeler explicitly created
three and the conservation relation finding algorithm inNfualel Builder detected four.

d[MASS
% = u[MASS]
d[APC-P _ kaap{CID2)([APClr — [APC-H)  FiapdAPC-P
dt Ja'apc+ ([APC]T - [APC'H) g]iyapc+ [APC'H
d/BUD
[ 7 | = ks pud €bud.nd CIn2] 4 €pug nd CIn3] 4 €pud,pd C1b5]) — kg pud BUD]
d[C2
—[dt l_ kas pd CIb2][Sic1] + kpp,ca[Cdc14][C2P] — (dibz + Vaba + Vip,e1) [C2]
d[C2P
O] Vi 2] — (bl Ce1d] + hpca + Vipd)[C2P)
d|Ch
_[dt l_ Feas b4 CIb5][Sicl] + kpp,c Cde14][C5P] — (Kdibs + Vaos + Vip,c1) [C5]
d|C5P
O] Vi 5] — (bl Ce1d] + hipca + Vapg)[C5P)
d[Cdc6
[ dtc I (kg6 + Ko 16[SWid] + kg 16[SBF]) 4 (Va bz + kait2) [F2] + (Vaps + kaifs)[F5] +
d|Cdc6P
% = Vel Cdcl] = (kppis| Cdcl4] + kg3 16) [CAc6P] + Vi po[F2P] + V ps[F5P]
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7d[cjfl4] = ks 14— ka14/Cdc14] + (kanet+ Keiren) [RENT] + (kdnet+ Keirenp) [RENTP] —
(Kas,renfNET1] + kas renggNet1P])[Cdc14]
% = ks,14— kq,14[Cdcl4]r
% = (kg1 Teml]r + (kg 15— kj 15)[Teml1] + k3 15/Cdc14])([Cde15]r — [Cdelb]) — ki1s[Cdeld]
@ = (K p0-+ k! 5dAPC-P)([Cde20]r — [Cde20]) — (madz+ ka20)[Cdc20]
% = k¢ 20+ k& sdMeml] — kg 20[Cdc20]r
% = Ks.can— acan O] + J::;di[ggﬁﬂf]; _[C[(cigi]f]) - J:f;dﬁgggu
% = ks,cdh— kd,canCdhl]t
d[cdlfm — (K g+ kYo Mem 1)) [MASS] + kaipolC2) + kaselC2P] + kaialF2) + kaselF2P]
(Vabz + kas,pdSicl] + Kas,id Cdc6]) [Clb2]
d[Cdlf o (ks ps+ ke pd SBF])[MASS] +- ki ps[C5] + kd3,c1l C5P] + kaifs[F'5] + ks 6[F5P] —
(Vass-+ FasidSict] + kas sCc6]) O3]
d[(z;:z] = (K, o+ K JSBF])[MASS] — kg s CIn2]
TEDL] — (ke Vapod (Bl — [Bsp1]) — Fas st Bspi]
% = kas 2 C1b2][Cdc6] + kpp,6[Cdc14][F2P] — (kgis2 + Vape + Vip.te) [F2]
2] VigsolF2] — (kopyelCdel4] + o + Vapo) [F2P)
@ = kas 15 C1b5][Cdc6] + kpp,[Cdc14][F5P] — (kdiss + Vaos + Vip.te) [F5]
AESP]  VigsolF5] — (kppyelCdeld] + o+ Vaps)[F5P)
d[l\;itl] = ksnet— (kdnet+ Kas renfCdcl4] + Vigpned [Netl] + (kd.14 + Edirent) [RENT] + Vip ne{Net1P]
% = ks net— kdanefNetl]t
ORI — Ky nfconselC162) + cogslCIV) — kg en{ ORI
PO — b gt K pdSBE] + K pqfdem] + (B — [Espi]) — (Vapas + hasesfBsp]) [Pt
d[lz;X] = ks ppx— Va,pp PPX]
@ = Kasren]Cdc14][Net1] + Vip ne{RENTP] — (ka4 + kdnet+ kdient + Vipned [RENT]
B — (Kb R Swis]) + (Vi k) C2] + (Vas + k) C5) + e Cle14][Sic P] —

(kas,biC1b2] -+ kas,bE{Clb5] + ‘/I(p,cl) [Sicl]
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d[SiclP . .
d[SPN] ks sprl C1b2]
= : —k SPN
dt Jspn+ [C1b2] aspiSPN]
d[Swi5] , " . . .
dt = kS swi + kS,SWi[Mcml] + kasw|[CdC14]([SWl5]T - [SW15]) - (kd,SWI + ki’swi [Cle])[SWl!S]
d[Swib .
[ ;Vt Ir = ké swi T kgsm[Mcml] — ka,swilSwib]t
d[Teml] — kper([Teml]r — [Teml])  kpupo[Teml]
dt  Jatem+ ([Teml]t — [Teml])  Jitem+ [Tem1]
[Bck2] = Bg[MASS]
Cln3| =
O8] = S D MASS)

[Mcml] = G(ka,mcrr{cuﬁ]a Ki,mem, Ja,mem Ji,mcm)
[SBF] = G(Va sbf, Vsbf, Ja sbf, Jl sbf)
[Cdc6]t = [Cde6) + [CAe6P] + [F2] + [F2P] + [F5] + [F5P]
[CKI]y = [Sicl]t + [Cdc6]r
[CIb2]r = [CIb2] + [C2] + [C2P] + [F2] + [F2P]
[Clb5]y = [Clb5] + [C5] 4+ [C5P] + [F5] + [F5P)
[Net1P] = [Netl]t — [Netl] 4+ [Cdc14] — [Cdcl4]r
[RENTP] = [Cdcl4]t — [RENT] — [Cdc14]
[Sicl]t = [Sic] + [Sic1P] + [C2] + [C2P] + [C5] + [C5P]

The remaining algebraic equations define the Goldbetehlidos function [63] and reusable rate terms that appear
in the differential equations.

2JiVa
Vi = Va+ JaVi + JiVa+ / (Vi = Va+ JaVi + JiVa)? — 4(Vi — Va)Ji Va
Vacah= kb cant Ko carf Cdc14]
Vasbf = Ka sof(€sbf.n2 CIn2] + espfna([CIn3] + [Bek?2]) + esprpg C1b5])
Vaoz = ki pp + kf polCdh1] + kg pogd Cdc20]
Va,os = kg ps + kg pslCdc20]
Vi pds = k(ljl,pds"’ k(lj/Z,pds[CdC2O] + kéIS,pds{thl]
Vapex = Kyppe - ki ppul J20,ppx + [Cdc20]) Jpds
[Pds1] + Joas
Viedn = ]ﬂ/cdh + kl//cdh(ecdh,nicm?)] + €cdh,ndCln2] + ecdn pd Cl1b2] + €cdnpd C1b5])
Visbf = ki spr + K spf C1b2]
n kd21c1(651’n3[01n3] + Eclykz[BCkQ] + 601,n2[01n2] + 601,b5[01b5] + 6c1,b2[01b2])
Jdaz,c1+ [Sicl]t
kdg'f6(€f6yn3[cln3] + Efeykz[BCkQ] =+ Efsyn2[01n2] + €f6yb5[clb5] =+ Efsyb2[01b2])
Jaz.16+ [Cdc6]t

G(‘/av ‘/iv ']aa ‘]I) =

Vi(p,cl = kdl,cl

Vikp.t6 = Kd1,t6 +

VI(P net = (kkp net T kkp neJCdCl5]) [MASS]
Vpp,net— kpp,net+ k;/n/p,nel[PPX]
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The budding yeast model includes auxiliary variati3é8), ORI, andSPN in addition to the equations that control
the chemical species in Figure 6.1. Auxiliary variablesraoalel variables that exist solely to facilitate working hwit
the model. These auxiliary variables link the evolution oftpin concentrations to cell cycle events. The SBML
model elements that support the traditional concept of el are chemical species and parameters. The modeler
entered the auxiliary variables in the Model Builder usilgmical species. Many simulation systems translate an
SBML parameter into an unchanging model value regardlet®wfthe model uses that parameter. This limitation
makes the use of chemical species instead of parametersréseat auxiliary variables a more portable approach.

The concentratiofBUD] signals the formation of a bud. In the model, the differdraguation forBUD tracks
the proteins tha€dc28/cyclin dimers phosphorylate. The rate of synthesiBofD reflects the importance of these
driving proteins known to affect bud formation [46]. The centratiofORI] signals the onset of DNA synthesis and
the invocation of the DNA replication and spindle assembigakpoint. Finally, the concentratid®PN] signals the
alignment of chromosomes along the metaphase plate anidtihg bf the checkpoint. There is a known connection
between the lifting of this checkpointand a drop in CIb2-elegent kinase activity [141]. The drop in the concentration
[CIb2] signals cellular division.

The modelers fitted the rate constants for the auxiliaryaideis against mutant strains that lack certain combina-
tions of the involved cyclins. Furthermore, the modelerssghscales for the auxiliary variables so that events occur
when the concentratiofBUD], [ORI], or [SPN] reach the threshold value f0. However, the modelers later dis-
covered that several viable mutant strains have a buddsmprse that is too weak for the concentrafB&/D] to
surpasd.0 in the model with the chosen rate constants. The automatedeimealuation procedure in this dissertation
uses a threshold value 068 for the concentratiofBUD]. Since the scales of the auxiliary variables are arbittagy,
modeler must choose appropriate threshold values usirgriexige about the model.

The budding yeast model cycles through five conceptual stdgeng execution. These conceptual stages of the
model do not correspond directly to the phases in the traditicell cycle. The model uses discrete events to signal
transitions between the conceptual stages. Section 4c2ilded the mechanism for implementing discrete events in
JigCell. A model transition occurs when a function of timepdndent variables in the model crosses a threshold.

Initially, the model is in theunlicensedstage. When the concentrati@RI| drops below its threshold, the
origins of replication on the DNA of the budding yeast celtbme licensed and the model enterslibensedstage.
Eventually, the concentratid®RI] rises back up above its threshold. At this point, the budgiast cell completes
the G1 phase of the traditional cell cycle and the model ttians to thefired stage. While the model is in tH&ed
stage, the budding yeast cell replicates its DNA and paksesdh the S and G2 phases of the traditional cell cycle.

Finally, the budding yeast cell begins mitosis. When theceotration[SPN] rises above its threshold, the chro-
mosomes align along the metaphase plate, and the moded émtatigned stage. The final event before division is a
rise in the concentratiofiEsp1]. This event occurs when the cell passes through anaphadepbase, and the model
transitions to theseparatedstage. All preparations for division in the budding yeadt @ae now complete. When
division occurs, the mass splits into two copies of the bongdieast cell, and the model returns to tivdicensed
stage. Figure 6.3 shows the connection between the coradapages of the model, the discrete events that occur, and
the traditional phases of the budding yeast cell cycle.

Figure 6.3: Connections between the conceptual stages imtiel, discrete events in the simulation, and the tradi-

tional budding yeast cell cycle.
G1 S G2 M

- AN N AN V_/W AN N

unlicensed licensed fired aligned separated

_.metaphase telophase o

ORI drop ORl rise SPN rise - cytokinesis
ESP1 rise

In the mathematical model, division occurs when the comeéinh [C1b2] drops below the parametéf.,. The
motherand daughtercellsdivide the mass unequally. Thgrdaucell receivegl —2~#/P)[MASS] mass, wherg is
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the mass doubling time of the growth medium dnds the observed daughter cell cycle time. The mother cedlives
the remaining mass. Typical values forare90 minutes in glucose anth0 minutes in galactose. The concentrations
[BUD] and[SPN] reset immediately after cellular division. The concentrafORI] resets early in the cell cycle after
the relicensing of the origins of replication of the cell [84 drop in the total concentratiofC1b2] + [Clb5] below
the parameteK,,; signals this event.

6.1.2 Mutant Strains

The modelers fitted the parameters of the budding yeast nigdapplying parameter twiddling and attempting to
replicate the phenotypes of the wildtype and 1l3¢ mutant strains in Table 6.1. The automated model evaluation
procedure in this dissertation can handle the wildtype Edof these mutant strains. Experiments that expose the
mutant strain to nocodazole require a different evalugpimmtedure. These experiments produce experimental data
that is in a qualitatively different form from the standarsgberiments.

Table 6.1: Mutant strains used to fit the model) ihdicates a mutant strain Chen previously found not to egre
with the experimental observations;) (ndicates an additional problematic mutant strain thatrfodel evaluation
procedure identified 1] indicates a mutant strain that the automated model evaiuptocedure does not support.

in glucose

clnlA cin2A
clnlA cin2A cdhA
GAL-CLN3

bck2A
cln3A bek2A
cln3A bek2A siclA

clnlA cin2A ¢cin3A
clnlA cin2A cInA siclA

clnlA cin2A cin3A GAL-CLB5

clnlA cln2A cinA apd®

siclA
GAL-SIC1 cIlniA cIn2A

GAL-SIC1 GAL-CLN2 clmd cIn2A cdh1A

siclA cdhlA (%)
cdc@i2-49 sicii

cdc@i2-49 sicA cdhlA GALL-CDC20

swiA cdhA (%)

clblA clb2A

Multi-copy GAL-CLB2
GAL-CLB2 sich\ (x)
CLB2-dii in galactose
CLB2-dA multi-copyCDC6
GAL-CLB2-di

clb5A clbaA

(Continued on next page)

Wildtype
in galactose
ClIn mutants
GAL-CLN2 cIn!A cIn2A
GAL-CLN2 cIni cIn2A cdhA (1)

Bck2 mutants
multi-copy BCK2
cln3A bck2A GAL-CLN2 cIniA cin2A

Triple cln mutants
clnlA cIn2A ¢cin3A GAL-CLN2
cln1A cIn2A cIin3A cdhA
clni cIn2A cIn3A multi-copy BCK2

Cdh1, Sicl, and Cdc6 mutants

GAL-SIC1

GAL-SIC1 GAL-CLN2 clm cin24

cdhlA (x)

siclA cdhlA GALL-CDC20

cdc@2-49 cdh ()

swid

swixA cdhld GAL-SIC1
Clb1 CIb2 mutants

clb2A CLB1(x)

clb2d CLB1 cdhii (%)

GAL-CLB2 cdhaA

CLB2-dd multi-copy SIC1

CLB2-di clbxA

CIb5 Clb6 mutants
clb3A clb&A cInlA cin2A

clnlA cln24 siclA
clnxA

clnlA cIn24 bek2A
cIn3A bck2A multi-copy CLN2

cln cIn2A cin3d GAL-CLN3
cInlA cIn24 cIn3A multi-copy CLB5
clnA cIn24 cln3A GAL-CLB2

GAL-SIC1-db

GAL-SIC1 cIniA cIn2A cdh1A
Cdh1 constitutively active
cdcA2-49

cdc@2-49 sic cdhA (x)
swisA GAL-CLB2

GAL-CLB2

clb2A CLB1 pds (x)
CLB2-did

CLB2-dd GAL-SIC1
CLB2-diA clbXA in galactose

GAL-CLB5
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GAL-CLB5 siciA
CLB5-di siclA
GAL-CLB5-di

cdc2¢®
cdc2\ pds!A clbiA
cdc2¢® bub2A

pds1 ()
GAL-PDS1-drh

temiA

tem?® GAL-CDC15
cdcl:

cdc1® nett®

net1s
GAL-CDC14
cdc14® GAL-SIC1

cdc14® cdhiA at permissive temp.

TAB6-1 cdc18

mad2\

wildtype in nocodazol)
mad2\ pds}A in nocodazoléf)
bub2Ad mad2\ in nocodazoléf)

APC-A

APC-A cdhA multi-copy SICX(1)
APC-A cdh!A GAL-CDC6
APC-A GAL-CLB2

CHAPTER 6. CASE STUDY OF A BUDDING YEAST MODEL

GAL-CLB5 cdhat
CLB5-diA pdsiA

Cdc20 mutants
cdc2) clbxA
GAL-CDC20

Pds1/Espl interaction mutants
espf
GAL-PDS1-dd esp®
MEN pathway mutants
GAL-TEM1
temA net1®
Multi-copy CDC151)
cdc1%® multi-copyCDC14
Exit-of-mitosis mutants
GAL-NET1
GAL-CDC14 GAL-NET1
cdc18thenGAL-SIC1
cdc14® GAL-CLN2at permissive temp.
TABG6-1 clb®
Checkpoint mutants
bub24
mad2\ in nocodazolé})
bub2A in nocodazoléx)()
pds1 in nocodazolét)
APC mutants
APC-A cdna
APC-A cdhA GAL-SIC1
APC-A cdid multi-copyCDC20

CLB5-diA
CLB5-di\ pdsA cdc2@d

cdc2@\ pdsiA
cdc2® mad2A

PDS1-d&
GAL-ESP1 cdc?d

tem'® multi-copy CDC15
temXA multi-copyCDC14
cdc18°® multi-copy TEM1

cdc1%d
n&ttdc206®
cdc18 siclA at permissive temp.
TAB6-11)
TAB6-1 clb2d CLBI()

mad2\ bub2A

mad2\ GAL-TEM1in nocodazolé})
bub2A pds1A in nocodazolét)
netl® in nocodazolé})

APC-A cdhA\ in galactose
APC-A cdd multi-copyCDC6
APC-A sicA

Each mutant strain uses the same system of differentiatieqgainitial conditions, and parameters as the wild-
type, changing only those values that the nature of the iatgbverns. A mutant strain that deletes a gene sets the
rate of synthesis for the corresponding protein to zero. Aamiustrain that overexpresses a gene adjusts the rate of
synthesis for the corresponding protein according to thénatkof overexpression. If the gene has multiple integrated
copies under control of the natural promoter, then the ngain multiplies the rate of synthesis to account for the
extra copies. If a foreign promoter constitutively ovenegses the gene, then the mutant strain increases the rate of
synthesis and changes the specific growth rate of the celatomthe new medium.

The modeler generally does not know the true rate of syrglfesian overexpressed gene. Instead, the modeler
must fit the rate of synthesis against the known mutant straith that method of overexpression. Every mutant that
uses a particular overexpression construct shares a sialgle for the rate of synthesis.

6.2 Evaluation Procedure

Section 4.4 discussed the component pieces of a compangbe UigCell Comparator. Specifically, the automated
model evaluation procedure for the budding yeast modelsierecutable descriptions and experimental data for the
mutant strains, a data transformation procedure, and ati® function. Section 6.1 described the budding yeast
model and mutant strains. This section explains first howettexutable description derives from the mathematical
budding-yeastmodeland-mutantstrain definitions and thearsdhe remaining components of a comparison in turn.
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Previously, Chen entered the budding yeast model into th@eli Model Builder, shown in Figure 6.2. Each
mutant strain changes parameters and initial conditiorthénmodel to describe the nature of the mutation. The
JigCell Run Manager stores these changes without requinaigthe modeler produce multiple copies of the model.
Figure 6.4 depicts a collection of runs for the budding yeastlel that represents the mutant strains from Table 6.1.

Figure 6.4: Some mutant definitions for the budding yeastehotiFigure 6.1 in the JigCell Run Manager.
& JigCell Run Manager Q@

File Edit
Runs | Basal Settings ”Slmulalanellinus ‘

Model file: ‘budumgyeasvyeast.sbm\
Mame Parents Changes Simulatar Settings Description
MODOB_WT_galactose MOD0A_WT mdi=150
MO01 _cln2del MO00A_WT ksn2'=0
MO02_GALCLMZ MOOOB_WT_galactose ksn2=galksn2’, ksn2=0.0
MO07_cln3del MO00A_WT Dn3=0
W008_GALCLMI MOOOE_WT_galacinse Dnd=20
011 _hck2del MO00A_WT b0=0
M012_SKBCK2 MO00A_WT b0=5.0" b

Tl v

M028_sictdel MO00A_WT ksel'=0, ksc1=0
MO029_GALSICT MOOOB_WT_galactose 'k—sﬂ‘:ga\ksm‘
MO36_cdhidel MO00A_WT ksedh=0, CDH1i=0, COH1=0
MO37_COH1 MOOOB_WT_galactose kicdh'=0.0, kscdh=3.0 * kscdh
MO38_cdeBdeld? MO00A_WT ks"=0, ksfb"=0, ksfE=0
m041_clb2del MO00A_WT ksh2=0, ksh2'=0

0

042_GALCLBZ MO0OB_WT_gnalactose ksh2=0alksh2'
M43 _MULTI_GALCLB2 M042_GALCLEZ keh2'=f.0" galksh2' " E

The output of each run consists of measurements for all afttkenical species in the budding yeast model taken at
a regular interval from the start time, which is time zeroeTimit of time for the budding yeast model is minutes. One
complete pass through the budding yeast cell cycle gepaeaddes betweeh00 and200 time steps. Since the initial
cycles exhibit transitory behavior, modelers generallghwio examine only the later cycles. The automated model
evaluation procedure in this dissertation uge80 time steps, approximately ten to twenty cycles, as the maxim
amount of time to run the model. From an efficiency perspective automated model evaluation procedure should
only request the minimum needed number of time-course me&nts. However, the automated model evaluation
procedure currently must request all of the time-coursesmmeanents in advance, and it is difficult to predict how
many time-course measurements the automated model ewalpabcedure needs.

In [41], Chen performed simulations using the WinPP simarl&tom G. Bard Ermentrout of the University of
Pittsburgh Mathematics Department. This dissertatiors tise similar XPP simulator [51], another simulation pro-
gram that Ermentrout developed, for comparison. The sitautontrol settings in the Run Manager specify that the
simulation program is XPP, that the integration methodésdtiiff solver, and that the end of simulation time i2@®0
time units. The other simulator control settings retairirtdefault values from the JigCell wrapper service for XPP.
All of the mutant strains use the same simulation programsamdlator control settings.

Finally, the Run Manager requires the basal parametersitrad conditions for the budding yeast model, to which
it applies the changes of the mutant strains before exatulable 6.2 lists the basal initial conditions for the burdgdi
yeast model and Table 6.3 lists the basal parameters. Tharrder of this chapter assumes that the modeler is using
the basal parameters and initial conditions from thesesabl

Table 6.2: Basal initial conditions for the wildtype buddiyeast cell.

[MASS] = 1.206019 [APC-F = 0.1015 [BUD] = 0.008473 [C2] = 0.238404
[C2P] = 0.024034 [C5] = 0.070081 [C5P] = 0.006878 [Cdc6] = 0.10758
[Cdc6P] = 0.015486 [Cdcl4] = 0.468344  [Cdcld]r = 2.0 [Cdc15] = 0.656533

[Cdc20] = 0.444206  [Cdc20]7 = 1.91634 [Cdh1] = 0.930499 [Cdhl]r = 1.0
[C1b2] = 0.1469227 [Cb5] = 0.0518014 [CIn2] = 0.0652511 [Espl] = 0.301313
[F2] = 0.236058 [F2P] = 0.0273938 [F5] = 0.0000724 [F5P] = 0.0000791
[Net1] = 0.018645 [Netl]r = 2.8 [ORI] = 0.000909 [Pds1] = 0.025612
[PPX] = 0.123179 [RENT] = 1.04954 [Sic1] = 0.0228776 [Sic1P] = 0.00641
[SPN] =0.03 [Swi5] = 0.95 [Swib] = 0.97 [Tem1] = 0.9
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Table 6.3: Basal parameters for the wildtype budding yeslkt ¢

CHAPTER 6. CASE STUDY OF A BUDDING YEAST MODEL

w= (In2)/90 ké'15: 0.002 ké’,15= 1 ké{’/lsz 0.001 ké,zo: 0.05
ké{’zoz 0.2 kaapc= 0.1 ké,cdh: 0.01 /al,cdh: 0.8 kamem=1
ka,sbf: 0.38 ka,swi =2 kas,bzz 50 kas,bsz 50 kas,esp: 50
kas,f2: 15 kas,fsz 0.01 kas,rent: 200 kas,rentp: 1 kd,l4 =0.1
kd20=0.3 ké,bz = 0.003 kzlj/,bz =04 kdp2p=0.15 ké’b5 =0.01

c/il,b5: 0.16 kd,pua = 0.06 kd,can= 0.01 kdn2=0.12 kd,net=0.03
kd,ori = 0.06 ktlj,ppx =0.17 ké"ppxz 2 kd.spn=0.06 kd.swi = 0.08
kdl,clz 0.01 l{d]ﬂf@, =0.01 kél,pds: 0.01 kdg'clz 1 kdz'f@‘, =1
k(lj/Z,pdS: 0.2 kazc1=1 kaze =1 k(lj/S,pdS: 0.04 kdip2 = 0.05
kdips = 0.06 kdi,esp= 0.5 kdio = 0.5 kgiss = 0.01 Edirent=1
kdirentp = 2 ki1s=0.5 Ki,apc= 0.15 {’th =0.001 i/,/cdh =0.08
kimem = 0.15 i/,sbf =0.6 kil,/sbf =8 ki swi = 0.05 k((p,net: 0.01
I/</p,net: 0.6 Kpp.c1= 4 Kpp.fo = 4 k[/ap,net: 0.05 kgp,net: 3
ks14=0.2 ké,zo: 0.006 kg,zo: 0.6 g’bzz 0.001 g,b2: 0.04
é’bsz 0.0008 gb5: 0.005 ks pua= 0.2 é,clz 0.012 g,clz 0.12
ks,can=0.01 é,fG =0.024 g,fG =0.12 gés = 0.004 g’nzz 0
g’nzz 0.15 ks net=0.084 ksori=2 é;,pds: 0 ks,ppx= 0.1
ks,spn= 0.1 g,swi = 0.005 g,swi: 0.08 gl,pds: 0.03 gz,pds: 0.055
€pud,bs= 1 €pud,n2= 0.25 €pud,n3= 0.05 €c1,b2=0.45 €c1p5= 0.1
€c1k2=0.03 €c1,n2=0.06 €c1,n3= 0.3 €cdhb2= 1.2 €cdh,b5= 8
€cdn,n2= 0.4 €cdh.n3= 0.25 €i6,o2 = 0.50 €6 ps = 0.1 ee k2 = 0.03
ee,n2 = 0.06 €g,n3 = 0.3 €orip2 = 0.45 €orips = 0.9 Esbf b5 = 2
€sbf,n2 = 2 €sbf,n3 = 10 JZO,ppx: 0.15 Ja,apc: 0.1 Ja,cdh: 0.03
Jamem= 0.1 Jaspi= 0.01 Jatem= 0.1 Jaz2,c1=10.05 Jaz2.i6 = 0.05
Ji,apc =0.1 Ji,cdh =0.03 Ji,mcm =0.1 Ji,sbf =0.01 Ji,tem =0.1
Jnz=06 Jpds= 0.04 Jspn=0.14
By =0.054 Co=04 Dpz=1 Ke;=0.3 Kezp=10.2
[APC]T =1 [CdC15]T =1 [Teml]T =1
1.0 if [ORI] > 1 and[SPN] < 1,
Fbubz =

kltel = {
kmadzz {

0.2 otherwise.

1.0 if [SPN] > 1 and[Clb2] > K,

0.1 otherwise.

0.8 if [ORI] > 1 and[SPN] < 1,

0.01 otherwise.

6.2.1 Experimental Phenotype

An experimental phenotype describes the observed behafvéomutant strain in the laboratory. Each experimental
phenotype consists of a collection of classifiers. The aatethmodel evaluation procedure uses both quantitative and
qualitative classifiers to describe a mutant strain. Thetingzortant classifier is whether the mutant strain repdwatab
proceeds through the budding yeast cell cycle and viablyockpres. A mutant strain is viable if it completes the cell
cycle while satisfying the following five rules.

e The model must complete the conceptual cell-cycle stagéeinorrect order and without repeating a stage.

1. Adrop in the concentratiof®RI], indicating relicensing of the origins of replication oretBNA.
2-Afise in-the.concentratiof®RI], indicating the start of DNA replication.
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3. Arise in the concentratiof$PN], indicating alignment of the chromosomes along the mitggiadle.
4. Arise in the concentratiofitspl], indicating separation of the chromosomes.
5. A drop in[MASS], indicating the completion of cellular division.

The start of mitosis in a mutant strain must occur before itine that the wildtype cell in the same growth
medium requires to complete two iterations of the buddiragyeell cycle.

The alignment of chromosomes along the mitotic spindle roastir while the concentratidiispl] is below
the threshold for the separation of the chromosomes.

e The concentratiofBUD| must rise above the threshold for budding before cellulasitin occurs.

e The mass of a mutant strain must never grow beyond four timesnass at division of a wildtype cell in the
same growth medium and must never shrink below one-fourthatfsame wildtype mass at division.

As an additional requirement to the above rules for viahitihte model for a viable mutant strain must exhibit a
periodic, steady-state behavior. The phrase ‘steadg-stad mathematical misnomer although biological modelers
readily employ that term. The concentrations of chemicatgs continuously change in a living cell, never reaching
a steady-state. In this dissertation, the term ‘steadg-st@havior’ instead refers to the fact that the concewimatof
chemical species in a typical, viable cell have an exaapeating oscillatory characteristic. A mutant strain asole
only if the model satisfies the above rules for viability ahd squared relative differences of both the mass at division
and G1 phase length in minutes are less than five percent.

Figure 6.5 shows the experimental phenotype for the budgéagt model. The viability of the mutant strain
determines the additional classifiers that the automateteh@valuation procedure collects.

Figure 6.5: Phenotype description for an experimentalmsien of a budding yeast mutant strain.

viabl Length of the G1 phase in minutes
Mass at division relative to the wildtype

unlicensed
licensed
Viability Location of arrest fired
inviable aligned
separated
Type of arrest
Number of successfully completed cycles

In viable cells, the commonly observed properties incluéngs of the budding yeast cell cycle events and the
mass of the cell at division. The automated model evaluaiionedure times the cell cycle using the duration of the
G1 phase. Adding timing data for additional cell cycle egetot the automated model evaluation procedure is not
difficult, although experimentalists rarely can collect@@te in-vivo time measurements. Experimental obsemati
of the mass at division often are in relative terms, such las thutant cells are roughly twice the size of a typical
wildtype cell”. Therefore, the automated model evaluapoocedure works with the ratio between the mutant strain
and wildtype masses in the same growth medium. Although tienzated model evaluation procedure does not
account for errors in the experimental observations dirgitite modeler can adjust control parameters in the oljecti
function to indicate the tolerable range for an observation

In inviable cells, the automated model evaluation procedecords where in the budding yeast cell cycle the cell
arrested and for what reason. The location of arrest in theyele uses the conceptual stages of the model. The
reason for arrest uses the rules for viability given abovachEeason for arrest has a numeric code in the software,
and-the JigCell.Comparator.provides details about the &dicproblem in the user interface. Some mutant strains
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can successfully complete the cell cycle once before bampstuck, such as the mutant str@bB5-dix\ siclA [74].
The automated model evaluation procedure records the nuaflmycles successfully completed before arrest to
distinguish this condition. The description of an arrestelfihas a hierarchical comparison.

1. Given two experimental phenotypes of arrested cells,dinsipare the locations of arrest.
2. If the two phenotypes arrest in the same stage, then cemipatypes of arrest.

Every type of arrest is equally unlike all of the other typEke automated model evaluation procedure can accommo-

date a new type of arrest without worry of a combinatoriallegipn with respect to the number of error conditions.
JigCell displays the phenotype of a mutant strain as thenuofdhe classifiers foviable andinviable mutant

strains. Figure 6.6 shows a portion of the experimental fdaithe budding yeast model in the JigCell Comparator.

Figure 6.6: Some experimental data for the mutant strairthebudding yeast model of Figure 6.1 in the JigCell
Comparator. The detail view shows the phenotype for thetyplel budding yeast cell in a galactose medium.
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6.2.2 Data Transformation

The time-course output of a simulation program is not diyesbmparable with an experimental phenotype. When
evaluating the budding yeast model by hand, modelers mesligira phenotype from the model time course. The
automated model evaluation procedure requires a simitarighm for predicting the phenotypes of mutant strains.
As Section 4.4 mentioned, JigCell calls these algoritharsdforms. Figure 6.7 shows the transform that the automated
model evaluation procedure uses for the budding yeast model

The budding yeast transform has three sections: initiéimathe main loop, and event checking. The initialization
section handles bookkeeping at the start of evaluation atietdeginning of each iteration of the budding yeast cell
cycle. Modelers specify the initial conditions of the madeld these initial conditions can correspond to any stage of
the budding yeast cell cycle. The basal initial conditionegin Table 6.2 configure the budding yeast model just after
licensing of the origins of replication of the DNA. Due to feebasal initial conditions, the budding yeast transform
must treat the first iteration of the cell cycle differently §tarting in thdicensedstage. Successive iterations of the
budding yeast cell cycle begin in thlicensedstage.

The main loop monitors the growth and division of the buddiegst cell. Each time through the main loop, the
transform requests the next available time-course meawne First, the transform checks whether cellular divisio
occurred since the previous measurement. Mass is a smagibnentially increasing variable in the budding yeast
model. Cellular division causes a sharp, discontinuoup gréhe mass when the mother and daughter cells separate.
Therefore, a drop in mass indicates that cellular divisiocuored during the previous interval of time.

If the transform detects that the budding yeast cell divjdleen it further checks that the cell completed all of the
stages of the cell cycle and formed a bud. The auxiliary eBUD measures the budding response in the cell, which
can-occuratany-time within-the.budding yeast cell cyclehéfhudding yeast cell viably completed the cell cycle and
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Figure 6.7: Data transformation for the budding yeast modl&ligure 6.1 that predicts a phenotype from the time-
course output of the model. The configuration of the tramsfoorresponds to basal initial conditions in Table 6.2 that
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budded, then the transform checks whether the model is iéixigilperiodic, steady-state behavior. If the model meets
the steady-state criteria, then the transform halts anthdescthat the mutant strain is viable. Otherwise, the model
proceeds with the next iteration of the cell cycle and thedfarm continues to request time-course measurements.

The budding yeast model predicts that cells stuck in thecgelk experience unbounded growth. This is physically
impossible as an extremely large cellular mass damagesdh®nane enclosing the cell, and the cell eventually dies.
The transform uses the viability rule that restricts the if a budding yeast cell to detect this condition in mutant
strains. With the previously given basal parameters art@ironditions, the minimum budding yeast cell mass is
approximately0.6, and the maximum mass is approximatély0. The transform computes the actual minimum and
maximum sizes during runtime by simulating the wildtypd aethe appropriate growth medium.

Finally, the transform checks for the cell cycle events thatesent stage transitions. At each transition between
cell cycle stages, the transform first ensures that the medehking a permissible transition. The cell cycle does not
ordinarily permit a cell to go backwards in the cell cyclgeating a stage, or to suddenly skip ahead in the cell cycle.
Such illegal stage transitions in the budding yeast cellecgce fatal, and the transform declares that mutant strains
with these temporal problems are inviable. After the tramsfvalidates a transition, the model enters a new stage of
the cell cycle, and the transform resumes examination tfiéutime-course measurements.

The transform requires that the modeler specify a simulgirogram that can detect the discrete event transitions
in the budding yeast model. The XPP simulator supports elis@vents with the ‘global’ statement [51]. Other sim-
ulation programs, such as LSODAR (Livermore Solver for @ady Differential equations, with Automatic method
switching for stiff and non-stiff problems, and with Rootding) [38], have similar support. The JigCell simulator
wrapper service for these programs translates the disevetd specification to the native language of the simulator.

When a discrete event transition occurs, the simulator eysph root-finding algorithm to determine precisely
the moment that the event trigger condition was first trudependent of the output granularity of the time course.
The transform can discover discrete event transition tiai®r by examining the time course retrospectively or by
receiving notice of discrete event transitions from thewation program. Having the transform determine the times
of discrete event transitions retrospectively is gengralbre portable across simulators and is the only method that
XPP supports. Having the simulation program report thegionfadiscrete transitions is more efficient.

Two of the discrete event transitions require that the fansapply special handling to correctly validate the rules
of viability in budding yeast cells. First, some of the mutatmains linger in the G1 phase beyond the time that the
rules of viability permit. In this case, the transform judgkat the cell effectively blocks in the G1 phase. Second, at
the end of the cell cycle, separation of the chromosomes owasir after the alignment of the chromosomes along the
mitotic spindle and before cellular division. The indicatiof chromosome separation is a rise in the concentration
[Espl] above a threshold. Hence, the transform requires that thereisome alignment event must occur when the
concentratioriEspl] is less than this threshold. These two checks distinguistamistrains with particular defects
that are otherwise difficult for the modeler to detect.

6.2.3 Objective Function

The budding yeast objective function takes the experimgttanotype that practitioners observed in the laboratory
and the predicted phenotype that the transform generatesfre model to compute a non-negative, real-valued score.
Call the experimentally observed phenotypethe predicted phenotype of the mode] and define the objective
functionD : O x P — R>(. Table 6.4 lists the entries of the observed and predictet@iypes, which are the
six-tuples of classifiers that Figure 6.5 defined.

Table 6.4: Symbols and definitions for the observed and ptediphenotypes.

O,, P, = Viability

O,, P, = Steady state length of the G1 phase
Om, P, = Steady state mass at division

O., P, = Location of arrest

Oy, P, = Type of arrest

O., P. = Number of successfully completed cycles
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A score of zero from the objective function indicates a pefrfeatch between the observed and predicted phe-
notypes. Larger scores from the objective function indidatreasingly worse matches between the observed and
predicted phenotypes. In the JigCell Comparator, the apealuecc from an objective function indicates that the
objective function is not computable due to an error in thefiguration of the comparison. As Section 4.4 mentioned,
objective function scores have no absolute scale. The rapdaist calibrate the objective function by specifying a
threshold value that marks the end of the acceptable rangeooés. The JigCell Comparator highlights scores that
exceed the threshold value given by the modeler. The thigshhie indicates the confidence of the modeler that an
experimental observation and objective function scorettogy predict the validity of the model.

Due to a lack of experimental observations, an observedqiiee may not have all of the expected classifiers. If
0, is missing, then no comparison is possible @@, P) = . If O, = inviable, P, = viable, andO, is missing,
thenD(O, P) = w,, the same as i). were zero. Otherwise, the objective function simply drdmsdontribution of
terms with missing classifiers. The objective function saghen all of the classifiers are present is

O,—Py\2 In 2;’: 9 o o
wg * (Fo—==2)" + wm x (=) if O, = viable and P, = viable,
1 . o o .
D(0,P) = { W * 3P . ?f O, = wa_ble andpP, = mwa_ble,
00,p + we * (F—=2) if O, = inviable andP, = inviable,
Wy * Tro0 if O, = inviable and P, = viable,

wheredo p is the two-step delta function that scores experimentahptypes with arrest codes

we If O # P,
do.p=_w if O, =P,andO, # P,
0 if0,=P,andO; = P,.

The modeler tunes the objective function by adjusting tHatixe importance of the classifiers. The control
parameters for the objective function given by Table 6.&@lthe threshold value around ten for an unacceptable
fit between the model and experimental data. For exampleg tisese control parameters and this threshold value, the
mass at division for a mutant strain can vary by a factor of asdong as the length of the G1 phase for that mutant
strain is within3 * o, minutes of the experimental observation.

Table 6.5: Definitions and standard values of the objectimetion constants.

Symbol Definition Value
Wy Viability weight 40.0
Wy Length of G1 phase weight 1.0
o Length of G1 phase scale 10.0
Wi, Mass at division weight 1.0
Om Mass at division scale In2
W, Location of arrest weight 10.0
Wy Type of arrest weight 5.0
We Number of successfully completed cycles weight 10.0
O Number of successfully completed cycles scale 1.0

6.3 Results

The automated model evaluation procedure that this chdeseribed quickly evaluates the acceptability of an insgan
of the budding yeast model. This case study compares therpafce of an expert modeler using the classic tool,
WinP P to-evaluate the-budding.yeast model manually agdirstutomated model evaluation procedure in JigCell.
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To make the evaluation fair, JigCell uses the same simulgtiogram that the expert modeler used. Table 6.6 presents
the results. Afterwards, this section discusses how udifeyent simulation programs with JigCell affects the riésu

Each case study trial consisted of a small number of parambkt;ges along with a list of ten mutant strains
to evaluate for acceptability with the given parameterse &kpert modeler first evaluated whether each mutant was
viable. For viable mutant strains, the expert modeler gredithe length of the G1 phase in minutes and the mass at
division. The study requested unscaled values for the ntadigision rather than requiring that the expert modeler
compute the ratio between the mutant strain and wildtypesesasFor inviable mutant strains, the expert modeler
provided the reason that the mutant strain died. This refisaarrest was descriptive, such as ‘telophase arrest’, and
did not require technical justification. Prior to the staftle trial, the expert modeler received instructions that t
acceptable tolerance of numerical results was to withif of the actual value91% of the answers that the expert
modeler gave met this quality requirement. The remainirsgvans were withir20% of the actual value.

The study classified tasks according to whether the taskresfjthe continuous presence of the user. The simu-
lation runs that the expert modeler requested during mamodk! evaluation complete in around five seconds. This
is not enough time for the user to concurrently perform amothsk. The JigCell Comparator batches simulation runs
into a contiguous block. The user could leave the softwaattanded and perform other work during this time.

Fixed costs, such as launching the applications, loaditefilas, and entering parameter changes amortize over
the number of mutant strains. The results of this study ptebe amortized times for these activities.

Table 6.6: Budding yeast mutant strain evaluation timesnithe expert modeler employs manual versus automated
model evaluation. Values are average times in seconds ppentutant. £) indicates an amortized time.

Manual Automated
Startups 0.6 5.0
Basal parameter entry 21.8 54
Mutant parameter entry 241 -
Simulation 27.5 14.3
Evaluation 86.5 9.7
Time modeler present 160.4 20.2
Total time 160.4 34.5

For manual model evaluation, the expert modeler used WinRRh is a Windows-based version of the XPP
simulator by Bard Ermentrout. The expert modeler receivenbdel file that contains the differential equations of the
budding yeast model along with the basal parameters andlio@nditions. The expert modeler entered parameter
changes directly into the model file, replacing the old valu&inPP does not have a mechanism for storing the
parameter and initial condition changes of each mutarihstfdne expert modeler entered these changes from memory.
A user who could not recall the changes for a mutant straindvoeed to consult a lookup table.

A typical model evaluation sequence starts with the expedeter entering the mutant strain parameter and initial
condition changes. The expert modeler then produced tonese plots of the model. Often, the expert modeler
requested multiple plots before providing an answer. Tine from starting a simulation until WinPP produced a plot
is ‘simulation’ time in Table 6.6. The time that the expertarer spent studying these plots is ‘evaluation’ time.

For automated model evaluation using JigCell, the expedates received the SBML model, run, and comparison
files. The run file has all of the parameter and initial comditchanges for the mutant strains, so the user does not
need to provide these values. The collection of mutant gesmns required three hours to create originally. Since
then, modelers have performed billions of simulations gigivat run file.

When using JigCell, the time from starting a comparisonluné objective function computes a score, including
the time for simulation and running the data transformatisrsimulation’ time. The time that the expert modeler
spends reviewing the output from the JigCell Comparatagvaluation’ time. Although JigCell used the same simu-
lator and performed extra processing, the simulation tion@fitomated model evaluation is smaller than for manual
model evaluation. Typically, the expert modeler perforgnmanual model evaluation requested a plot of the first
500 minutes of simulation. If the mutant strain had a lengthypsiant phase, then the expert modeler needed further
simulation-to.view-the steady-state behavior. The expedetey might request a time-course plot with the start of a
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steady-state cycle shifted to time zero. Additionally,élpert modeler might redo runs after making an error ergerin
the parameters and initial conditions. In contrast, Jig&elays made a single request for the f2600 minutes of
time-course measurements.

The study did not record the number of self-detected anectad errors that the expert modeler made. However,
the expert modeler described when a mutant strain requined mork due to the perception of errors. The time for
evaluating a mutant strains averaged more than twice astbeg the expert modeler believed that there was an error.
The expert modeler restarted evaluatiorl ¢ of the mutant strains due to error.

Expected gains in correctness when using the automated mddevaluation procedure

The use of a transform in automated model evaluation endhéesliscovery of subtle defects that modelers find
difficult to identify visually in a time course. For exampthe transition from thaligned stage to theseparatedstage
occurs when the concentratiffisp1] rises above a threshold value. In a viable mutant straimmbsome separation
must take place before cellular division. Figure 6.8 shdvesconcentratiofEisp1] and[MASS] versus time over five
complete cycles of the AL-CLN3 mutant strain with the given basal parameters and initintit@ns.

Figure 6.8: The concentratidhisp1] and[MASS] versus time fo800 minutes in theGAL-CLN3 mutant strain with
the given basal parameters and initial conditions. Thesfam marks theSAL-CLN3 mutant strain inviable because
cellular division occurs before chromosome separatiohérfifth and later iterations of the cell cycle.
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During the first iteration of the budding yeast cell cycles toncentratiofiEspl] rises above its threshold value
more than five minutes before the drop[dfASS]. Successive iterations of the cell cycle do not appear ajgily
different in their relative timings of these events. Howe\kiring the fifth iteration of the cell cycle, chromosome
separation in th&AL-CLN3 mutant strain takes place fractionally after cellular siion. By the twelfth iteration of
the cell cycle, chromosome separation occurs more than fivetes after cellular division.

The transform marks th@AL-CLN3 mutant strain inviable after the model completes four sssfts iterations of
the budding yeast cell cycle. The mutant strain phenotyperést in thealigned stage with the reason for arrest that
cellular division occurred before the completion of alluégd cell cycle events. Figure 6.7 indicates that this type
of arrest has error code number one. A modeler that is examthie time course manually would not recognize this
defect in the mutant strain without considerable difficultjhe modeler is therefore likely to incorrectly declarettha
the-mutant-strain-is.viable--=One.complete evaluation of theding yeast model for a particular guess of parameters
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during parameter twiddling requires many such checks fability. Moreover, the modeler must repeat each viability
check over the examined cycles for all of the mutant strains.

Expected gains in time when using the automated model evaltian procedure

This study gives costs for startup and basal parameter thatyare larger than those expected for normal work. The
expert received mutant strains in sets of ten to elimindtgue as a factor. When evaluating &il1 mutant strains,
these costs contribute less to the total time. Extrapg@atinsets ofl31 mutant strains, manual model evaluation
requiresl 39.8 seconds per mutant strain. Automated model evaluatiorinesit.9 seconds per mutant strain, with
the expert modeler present foh.5 seconds.

Changing the numerical integration routine would lead tdhfer reductions in evaluation time for JigCell. For
this study, the automated model evaluation procedure b&edRP simulation program to provide parity with manual
model evaluation. High performance simulators, such asD/A®[38], achieve the same numerical accuracy on the
budding yeast model while expending significantly lessrefibis difficult to use a different simulator with the manua
model evaluation procedure as modelers rely on the useafanteof WinPP. Furthermore, totally eliminating simula-
tion time from the manual model evaluation procedure do¢sauluce the average mutant strain evaluation time below
112 seconds. During parameter estimation, which removes atlamuiintervention and user-interface support, auto-
mated model evaluation against the entire suite of mutaainstrequires less thard seconds, or approximatelyl
seconds per mutant strain on average. Automated modelagizails capable of a more than00-fold improvement
in evaluation time over manual model evaluation.
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Chapter 7

Conclusions

This dissertation covered the construction of models aftsémnical reaction networks through mathematical methods,
primarily using ordinary differential equations. Usingethreviously existing modeling tools, a skilled modeleridou
create accurate mathematical models of biological systeitinsmoderate complexity and gain an understanding of
dynamical processes. However, this process of buildingatsad tedious and error-prone. An expert modeler spends
much time turning a biological idea into a mathematical nhoBerthermore, this modeling process is not suitable for
novice modelers, who must typically spend several montiidihg models before they become proficient enough to
attempt original work. Teaching novice modelers how toduilodels is difficult because there are few resources that
explain how experienced modelers build models.

This dissertation describes how to make the constructianaxfels of biological systems easier and documents
the process that experts use to build models. Much of thedsdnathematical bookkeeping that modelers previously
performed manually is amenable to computer automations @isisertation introduces computational software that
performs this automation. Further progress in biologicaldeiing requires the use of better tools and modeling
processes. Investigations of complex eukaryotic orgasigquires models at least an order of magnitude larger than
the current state of the art. Existing modeling processdsaois do not scale to models of this size. Already, bringing
a model from conception to publication requires severatyefconcerted effort by skilled modelers.

The computational software that this dissertation presesduces the amount of time that an expert modeler
spends on bookkeeping and model evaluation. Model evatluatas a particularly significant bottleneck in the model
development process. Moreover, modelers were not penfigrmagular model evaluation because of its expense.
Alleviation of the model evaluation bottleneck should le@ectly to a reduction in the construction time for biolcgji
models and an increase in operational correctness.

The remainder of this section summarizes the major corttoibsiand conclusions of this dissertation. Section 7.1
summarizes the contributions of this dissertation. Theomapntributions in this dissertation are the observatiufns
the original modeling process, the construction of thesedlimodeling process, the JigCell modeling environmeat, th
requirements specification for the JigCell modeling enwinent, and the quantitative measurements of the impact that
the JigCell modeling environment has on model evaluatieatiBn 7.2 describes the history of the JigCell project and
presents a postmortem report of the software engineeritigesges and failures of the project. Section 7.3 examines
the user requirements from Chapter 5 in light of the softweargineering difficulties that the JigCell project faced
contemporarily.

Contents
7.1 Contributions . . . . . . e 112
7.2 Software Engineering EXperiences . . . . . . . . . e e 113
7.21 WhatWentRight . . . . . . . . 115
7.22 WhatWentWrong . . . . . . . L e 116
7.3 Software Evaluation Experiences . . . . . . . . ..o e 118
111

www.manaraa.com



112 CHAPTER 7. CONCLUSIONS

7.1 Contributions

Documentation for how biological modelers build models

Section 3.1 described the original modeling process obseirvthe modeling laboratory of John Tyson at Virginia
Tech. The literature has few good examples describing hodefees, particularly biological modelers, work to build
models. This modeling group did not have existing writtenutoentation that describes their modeling process.

The original modeling process came from the observatidmnaysof the modeling group working in the Tyson
laboratory to build models over a period of several monthecubnenting the modeling process of biological modelers
is important for understanding the activities that limi tapabilities of modelers and for calibrating any proposad
modeling process. Much of the work in this dissertation andlar modeling and simulation studies is not possible
without this kind of observational study.

A new modeling process for constructively building biologtal models

Section 3.3 described the revised modeling process, a nadeling process based on modeling methodology and
design but styled after the original modeling process irtiBe@.1. The revised modeling process makes the process
of building biological models more amenable to computeomattion.

Simply automating the original modeling process is notafie. For example, automating model evaluation in
the original modeling process leaves the modeler in-tlg-lmaking parameter guesses during parameter twiddling.
The modelers optimized the original modeling process fooughput given their existing computational resource
restrictions. Vastly expanding the computational cajitésl of modeling tools creates the potential for new maodgli
activities, such as parameter estimation, which do nograte easily with the original modeling process.

The revised modeling process replicates the inputs andiptedf the original modeling process but optimizes the
modeling process with computer automation in mind. Thesexyimodeling process provides a blueprint for building
new modeling tools that advance the state of the art in mogleli

More teams that build modeling tools should document theirasponding modeling processes. Having the
documented modeling process of a modeling tool allows fatyesis of the design of the tool without confusion with
the implementation of the tool. Moreover, biological madglis a still-expanding field, and modeling tool builders
should expect that modelers will demand support for new rimoglactivities. Unless the modeling tool builders record
their modeling process, the adaptation of modeling tootseto activities is unnecessarily difficult.

Modeling software that can handle large-scale biological mdels

Chapter 4 described the JigCell modeling environment fddimg models of reaction networks. Section 7.2 details
the software engineering lessons learned by building th€ell modeling environment. Furthermore, the JigCell
modeling environment closely aligns with the revised modgprocess and can act as a research environment for
studying the practice of modeling.

The biological modeling community is in sore need of toolsdficiently, reliably, and repeatably building large
models of biochemical reaction networks. The JigCell ajgpions support larger models than comparable modeling
tools, making the JigCell applications especially suiatar particular modeling efforts. Moreover, modelers can
readily adapt much of the JigCell modeling environment toeotmodeling domains. The JigCell Model Builder
and Run Manager are specific to continuous reaction-odentedels, but these applications are only specific to the
domain of biology to the extent of choices of words and coteégr displaying information in the user interfaces.
The JigCell Comparator is not specific to any particular niadedomain.

Development of the JigCell modeling environment also gagght into the design of the revised modeling pro-
cess. The revised modeling process remains weak in the afgaeblem formulation and model accreditation.
Researchers can test problem formulation and model atatiedi in the JigCell modeling environment experimen-
tally before integrating these activities into the reviseaideling process. Experimenting with an implementation ca
aid the development of the modeling process when the alaitaimain experts do not engage in a modeling activity
often enough to support direct study.
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Requirements gathering and analysis for biological modetig tools

Chapter 5 described the process of gathering methodolpdimaain, and user requirements for biological model-
ing software and applied those requirements to the JigCetlating environment. The methodological and domain
requirements are not specific to biological modeling, mgkime term ‘domain requirements’ a misnomer. Other
modeling environments can apply these requirements ter®ipport domain expert users.

The user requirements are specific to biological modelirdytarthe revised modeling process. Although other
modeling efforts could make use of these user requirementsstisure their support for the modeling activities that
this dissertation identifies as important, the user requirgs act primarily as a benchmark for the progress of the
JigCell modeling environment. These user requirementsdl&n the developers of JigCell with the originally stated
needs of the biological modelers. Section 7.3 gives a cdwdht use of these user requirements.

Practical, measurable impact of using the modeling softwar

Chapter 6 quantified the efficacy of the JigCell modeling enuinent by building an automated model evaluation
procedure in JigCell and applying that evaluation procedaorra recent model of cell cycle control in budding yeast.
This case study provided the first quantifiable demonstidtiat the revised modeling process and JigCell modeling
environment help biological modelers build models. Earkgasurements of the original modeling process showed
that ‘parameter twiddling’, the process of repeatedly giurgsnew parameter values and checking model fithess, was
a major bottleneck for model development. Automated modaluation speeds up checking model fithess by more
than1000-fold, and parameter estimation greatly speeds up the mgestnew parameter values.

The results of this case study demonstrate that automatelregaluation works for large-scale models with
complex outputs, such as cell cycle models, which modelerdqusly evaluated manually. Moreover, further work
shows that parameter estimation is viable for models ofstéde and complexity, indicating that computer automation
can vastly reduce model development time for models at Hie sf the art of biology.

7.2 Software Engineering Experiences

The JigCell project started with the goal of building a maaigtool for a particular group of biological modelers. The
set of planned features quickly expanded to include morécgtions and user groups. Development of the JigCell
modeling environment spanned from early 2001 through, sdate 2005, a period of nearly sixty months. During
this time, the development team remained small, generadlseging around five developers working part-time.

Marc Vass contributed the first code to the JigCell projectaembase-driven model builder, in early 2001. The
project restarted in late 2001 with new funding from the DARBoSPICE [30] program. Vass started work on a new
model builder, an interface to the XPPAUT simulation progfay G. Bard Ermentrout [52], and a tool for executing
models. Nicholas Allen started work on infrastructure amalch for performing model analysis. Jason Zwolak started
work on an interface to the LSODAR simulation program [38] artool for parameter estimation.

The scope of the JigCell project expanded from a simple ninglébol to a suite of applications, backed by
a database of historical model information, that would mewvan ‘end-to-end experience’ for building models of
biochemical reaction networks. This suite of tools was lyadentical in concept to the applications that Chapter 4
described, consisting of a Model Builder, Run Manager, anch@arator.

By the end of 2001, Vass produced an early version of the MBdatler, and Allen produced the build system
for the JigCell project and a barely functional Comparaftrthis time, Allen was integrating all of the developed
code and third-party libraries into the build system by hawding as the ‘build master’ and performing integration.
Within the first few months of 2002, Vass created the Run Managd integrated the XPPAUT simulator and Allen
developed the Comparator to the point that a modeler could, mimulate, and analyze a model.

In May 2002, the BioSPICE program made an initial releasefifare tools. Allen struggled to create a working
build of the JigCell modeling environment with the Model Bigr, Run Manager, and Comparator, primarily due
to the late start of integration. Allen and Vass quickly ¢eelaan installer, documentation, and a test plan for the
JigCell.modeling.environment-Although Allen ultimatelglivered the JigCell modeling environment to SRI past the
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scheduled deadline, few of the other tool builders in theSBIGCE program delivered contributions. Due to this early
success, the JigCell project received considerable dituithin the BioSPICE program.

Vass used the Open Agent Architecture [89] by SRI to intertae JigCell modeling environment with simulators,
primarily due to outside funding requirements. This wagtilous, causing significant problems with performance,
integration, and installation, and leading to a generatigatisfactory user experience. Originally, Vass and Allen
could only get the simulator to run on a single machine, fayaisers to run all simulations remotely over a network.
Even simple models required minutes to perform a simula#dter feedback by Allen and Cliff Shaffer to SRI, SRI
produced a new version of the Open Agent Architecture thdtested some of these problems.

At approximately the same time, Michael Hucka and AndrewnBinproduced a major revision to the SBML
language, SBML Level 2 Version 1 [54]. The JigCell Model Bigt was a prerelease adopter of this new version of
the SBML language. Vass produced the first parser implemgi®BML Level 2 Version 1 and modified the Model
Builder to load and save models in this language, repladiegcistom ‘mechanism’ format that the Model Builder
used previously. This transition to the SBML language cdusgnificant instability and data-loss problems in the
Model Builder, which would plague the JigCell project for radhan two years.

During 2002, the development of the JigCell project slowEde project source code increased to more than one
million lines of code, including third-party libraries cqmited during the build process. Allen still produced builds
by manually integrating source code contributions. Tinmrscbmpiling the JigCell project from a clean source tree
exceeded 40 minutes, slowing the rate of development atidge©ften, the integration of a new contribution required
several complete compiles and more than a day of labor. Atledified the IBM Jikes Java compiler [1] to handle
the JigCell project source code and developed an automatiexsrewriter to fix the remaining problems, reducing
the compile time by more than two-thirds. Although typicachine speeds have increased since, the JigCell project
continues to include its own Java compiler, a rarity todaypfwjects of this size.

In 2003, the JigCell project suffered a variety of setbadltee long-planned database, parameter estimation tool,
and new simulator never materialized. Although the datalvess ancillary to the functions of the JigCell project,
modelers sorely needed the new simulator based on LSODABptage the aging XPPAUT simulator. The JigCell
project repeatedly promised parameter estimation to neesiet truly complete the end-to-end experience, but simi-
larly never delivered this tool in the JigCell modeling eoviment. Allen completed the majority of the Comparator
during this time. However, Vass left the JigCell projectdreffinishing updates to the Model Builder and Run Man-
ager. User feedback turned strongly negative as the dasablags from converting the Model Builder to use SBML
instead of the mechanism format made work impossible.

The JigCell project began to nearly miss the regular, semialBioSPICE releases due to low code quality despite
the small number of features that the developers were adBimgng that year, BioSPICE also changed its integration
method from the Open Agent Architecture to the BioSPICE Dbasind, based on the Java NetBeans development
environment [30, 97]. Despite a lack of user interest in tieSRICE Dashboard, Allen and Vass spent several months
modifying the JigCell modeling environment to support the&PICE Dashboard. Ultimately, few users employed
the BioSPICE Dashboard to run the JigCell applications.

A succession of new personnel worked on the JigCell projetivéen 2002 and early 2004, none ultimately
contributing code. The project hit a low point in early 20@daking no user-visible progress for several months.
The JigCell project began integrating a tool for project agament that would connect the applications together and
manage data. However, the project management componenetated due to a lack of developer time.

In the middle of 2004, the developers of the JigCell projextided to totally overhaul their software engineering
methods. Thomas Panning, who originally joined the Jig@ediect to work on parameter estimation, set up and
administrated version control and bug tracking systemgh®project. For the first time, developers could access the
latest version of the JigCell project source code withouéiperforming the integration manually. After a several
month period of acclimation, the JigCell project devel@dmegan using bug tracking and version control effectively,
working to catalog the defects in need of correction. By thd ef 2004, the total number of identified defects
numbered several hundred, including dozens of criticakbug

Subsequent to the introduction of new software engineenathods, Allen took over day-to-day management of
the software development. Allen targeted for total replaeet the areas of the source code with the highest concen-
trations of bugs. During 2004, Allen developed a new SBMLsparand a new integration method for simulators,
supplanting.the-Open-Agent-Architecture and BioSPICE Daalhd approaches with a simpler, direct connection
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method. Panning worked on manually porting the model datedtin JigCell data files to the completed pieces of
the parameter estimation tool. Ranjit Randhawa joineditf@ell project and began rewriting the Model Builder. The
new Model Builder would use the SBML Parser for all data gierand file handling.

By the middle of 2005, Randhawa completed rewriting the M&ielder, reducing its code size by more than
eighty percent. The total number of identified bugs droppeldv fifty, and for the first time since the start of
bug tracking, there was a release containing no known alibags. The project accelerated from milestones of
several months in length to producing regular, functioniglgases every six weeks. Allen rewrote the Run Manager
with a new, simpler file format, and Panning converted the datt the large model of budding yeast by Katherine
Chen [41] for parameter estimation. Panning began perfaymagular production runs on the budding yeast model.
Additionally, Panning created a nightly build system thabanatically compiled the latest version of the softwaré an
posted a working release online each night.

Development of the JigCell modeling environment continims late 2005. The JigCell project source code
dropped nearly twenty percent in size over the previous gedrthe developers dramatically reduced the number
of known defects. Emery Conrad contributed an interfacehto SUNDIALS (SUite of Nonlinear and Dlfferen-
tial/ALgebraic equation Solvers) simulator [67], lessenthe need to rely on the XPPAUT simulation engine. Hucka
and Finney developed a test suite of SBML models for simutatiAllen connected the SBML test suite with the
JigCell modeling environment simulators to monitor theiatity and compliance with the SBML language.

The focus of the JigCell project changed during 2005 fromeatiing critical bugs to improving the user experience
of the applications. The user base of the JigCell modeling@mnment imploded because of the data-loss problems of
2003 and 2004. Regaining the trust of that population ofsusea difficult task. The JigCell project has now lost the
large head start that it enjoyed in 2002 over similar, copirary modeling projects. The continued success of the
JigCell project depends on regularly increasing the quafithe software and attracting new users.

Allen and Panning plan to leave the JigCell project shofftigrahe end of 2005. Randhawa, along with other new
JigCell project developers, will continue to develop JithiC&wvolak continues to work on an interface to the LSODAR
simulation program and a tool for parameter estimation.

7.2.1 What Went Right
Choosing the right tools and languages for the job

From the beginning, the JigCell project used Java as itsgsgirpprogramming language. Rapid development of the
applications during 2001 and 2002 allowed the JigCell miadednvironment to capture the attention of the modeling
community before other contemporary efforts were funalorHowever, the JigCell project could not tolerate the
slower speed of scripting languages due to numerical caatiputneeds. Moreover, it is doubtful that a project of
this size and duration could remain manageable and maatttiif the JigCell project had used the state of the art of
scripting languages in 2001. The Java language suppoiits dapelopment, is easily portable to the platforms that
the BioSPICE program supports, and efficient enough to waitk large models.

The JigCell project also benefited from the build systemAttlean developed in 2001 and the introduction of better
software engineering methods in 2004. Having a completgiyraated build system saved immeasurable time during
development and allowed the later introduction of autooaigihtly builds. Furthermore, the build system included
production of the web site and documentation, averting @ndigaster when a shared, central server was lost in 2003
with no backups. The JigCell project, unlike others that thachine hosted, lost no data because the developers could
easily reconstruct the data from their local copies.

Deciding to build many of the core components in-house

Another source of the early competitive advantage thatititéell project enjoyed was the decision to develop inde-
pendent implementations for reading and writing data. \des&loped a parser for SBML Level 2 Version 1 before
the official adoption of the standard and concurrently wittuaannounced project to develop a quasi-official parser
written by the SBML authors. The JigCell Model Builder hagpart for SBML before many other modeling groups
attempted to adopt the new standard. Moreover, the experieith implementing SBML gave the JigCell project
considerableinfluence within.the.SBML community in exchafg describing problems with the proposed standard.

www.manaraa.com



116 CHAPTER 7. CONCLUSIONS

Although there was additional cost associated with prauthis independent implementation, the JigCell project
was better able to control its own destiny because it did elgton external support for this core component.

The JigCell Comparator enjoyed a similar competitive atkge with its format for experimental data. Allen de-
veloped a lightweight format for representing experimbdtaiga [4] for the JigCell applicationsin 2001. The BioSPICE
program later standardized this data format, but the Jig@ehparator retained its own separate parser. The JigCell
project was immune to implementation changes in the Bio§EH)ashboard because of this independence.

Preventing feature creep from getting out-of-hand

Although the scope of the JigCell project expanded rapidiyrd) the first year, there was relatively little featureegre
since that time. Attempts to change the direction of the digfroject generally did not affect the development of
the core components, and these attempts died peacefufiguticonsuming excessive resources. The JigCell project
maintained a small team, and with the limited available pragmer time, it was important that the scope and scale of
the design remained under control.

A notable exception to this general area of success was thesion of support for the Open Agent Architecture
and BioSPICE Dashboard. Although this support was a funddggirement, these efforts had cost for the JigCell
project with little user benefit. Adding support for the BRIEE Dashboard delayed the JigCell project by approx-
imately six months. If the JigCell project had not supportieel BioSPICE Dashboard, then it is likely that the
developers would have completed stabilization of theaaitbugs in the software much sooner. Reducing the time
that the JigCell project spent in this chaotic period wowdsidrreduced the loss of users.

Realizing that the project needed a restart

Overhauling the software engineering practices of thedligifoject and targeting the buggiest portions of the seurc
code for rewriting probably best advanced the project stheeoriginal release in 2002. By early 2004, it was clear
that the JigCell project needed serious intervention tegntfailure. A large impetus to the project turnaround was
the use of better software engineering methods. With bsttitware engineering methods, rewriting portions of the
code became valuable, as developers decreased both themaiitibes of source code and the number of defects per
line of source code. Almost ninety percent of the criticaj$¥uvesided in just three percent of the source code.

The adoption of a public bug-tracking system allowed th€8ifproject developers to prioritize their work more
effectively and prevented developers from losing bugs.viBusly, there was little coordinated effort to prioritize
development. Developers created their own schedules formpging work and delivered completed modules to Allen
forintegration. The only time constraints were the bianBi@SPICE releases that had fixed release dates. Developers
often delivered modules that were buggy and missing ctifeatures. As developers could delay working on a bug
indefinitely, the JigCell projectignored many bug repolstablishing a bug-tracking system stopped developens fro
losing bugs and focused attention on the large number dd¢alriiugs.

7.2.2 What Went Wrong
Not having a clear prioritization of work

The JigCell project started foremost as a research effbi$. Understandable that during the early period, there was
no directed vision for how software development should geak Predicting the outcome and direction of research is
difficult. However, after 2002, there was a greater attermpiush the JigCell modeling environment into production
use. While internal users may tolerate “point, click, anast¥” behavior in software because you can train internal
users to avoid the buggy behavior, this approach does niet scaxternal users.

The JigCell project needed a vision of what modeling toolsuitd, which users to support, and when to deliver
key functionality. Developers relied on their own initiaito plan and deliver features for most of the project. How-
ever, delivering a functioning suite of interconnectedliagions requires more planning and project management to
coordinate development efforts. Having a clear prioritmawould have helped avoid putting off critical bug fixes to
work-en-relatively-unimportant-new features. Another isaas the early focus on producing demonstrations rather
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than getting the software into the hands of real users. Biodd modelers did not receive software that they could try
on real models until after the JigCell project developersgieted much of the implementation.

Failing to attract the right personnel

Finding the right personnel is a tough job for any softwarestigpment project. However, the JigCell project seemed
to have particular difficulty attracting developers wittpexience working on large projects. In part, this difficugty
inherent for an academic research laboratory, where matheadevelopers are students or recent graduates. Allen
was the only developer on the JigCell project with expegemorking on large-scale software projects.

As the size of the JigCell project expanded past severaldedrttiousand lines of code, this problem grew partic-
ularly acute. New developers struggled to learn how thenkvid into the overall software architecture and to learn
how to plan and organize work on a large project over a longpgderThe length of the project, nearly five years,
contributed to this problem as few developers had the tutitinal memory’ of past decisions and experiences. The
high rate of turnover of JigCell project developers durif@§2 and 2004 was also a factor. The JigCell project could
have eased this problem by producing better developer dectation and by investing more time teaching effective
software engineering practices to new developers.

Not challenging the initial vision after gaining more expeience

As Section 7.2 noted, the JigCell modeling environmentyaiekingly resembles the concept design of 2001. This
was due more to stubbornness rather than prescience. Fopkxahe JigCell Run Manager originally could not
exist inside the Model Builder because the Run Manager useparate model for each run. Later, the JigCell Run
Manager changed to use a single model for all of the runs imdileu However, the JigCell project did not revisit the
decision to have separate applications for building a maddldefining a collection of runs for that model.

The JigCell project developers also made several earlysidea without sufficient information or long-range
guidance. The use of the Open Agent Architecture, and IaeBtoSPICE Dashboard, was a funding requirement.
Correcting this design decision, leading to substantigkowements in performance, reliability, and ease-of-tosuk
several years despite the early detection of problems.

Another early decision was the division of functionality@mg several applications. Applications took ownership
of particular features primarily because of the personuail@ble in 2001 rather than any intrinsic reason. While
the priorities and design shifted, the applications remaiim their original arrangements. For example, the revised
modeling process in Section 3.3 has five conceptual divssadrfunctionality, but the implementation of the JigCell
modeling environment has four discrete applications. &lae good arguments for reducing the number of discrete
applications further, possibly to a single applicatioml8everal other modeling environments. The push to develop a
integrated project management component shows that trereea@ncerns about application cohesiveness.

Letting the situation become dire

The JigCell project reached a low point early in 2004 whensusefused to use the applications due to the number
of data-loss bugs. The number of bugs grew at an uncheckedamaseveral reasons, many of which Section 7.2
discussed previously. However, a serious failure was rkigaaction sooner to regain control of the project. The
high rate of bugs combined with the unresponsive of the Jigteject developers to fix those bugs, leading users
to abandon JigCell entirely. This is not a small feat as maajobical modelers are desperate to make use of any
modeling tools that they can obtain.

There were many opportunities for the JigCell project toedrate its poor software engineering practices during
2003 and 2004. The JigCell project missed these oppontsritecause of insufficient effort to bring the poor soft-
ware engineering practices to light. If the JigCell progetelopers had acknowledged that the software engineering
practices that they used were not sustainable, then theldwawe wasted much less time before fixing the flaws in
the software. After the JigCell project adopted bettengaife engineering practices in the middle of 2004, the ptojec
stabilized.and.the.developersfinally started fixing morestibgn they created.
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7.3 Software Evaluation Experiences

During 2004, the score for the JigCell applications wittpexs to the user requirements in Chapter 5 was acceptable.
However, users were not satisfied with the quality of the dlg@&pplications during this period. It is reasonable to
guestion why the user requirements did not identify thesditpproblems.

The requirements specification in Chapter 5 measures thkalaility of features and infers the quality of the
project from those measurements. In 2004, the JigCell nraglehvironment had many features but poor quality,
confounding the estimation of quality by the requiremeiptscification. If the JigCell modeling environment had
had a higher-quality basic implementation, then the scmm the requirements specification would more accurately
reflect the overall quality of the project. A more specific ®awof this problem is that user requirements typically do
not set detailed quality goals for a feature.

Users ask for a particular feature or capability in a sofeyaroduct, assuming that the software developers will
act with due diligence to implement the feature. It is atgbfor a user to specifically ask that the software product
not crash while attempting to save their data. This appri@obasonable. The number of cases that can go wrong
with a software product is unbounded, and users insteadgfmcthe bounded set of features of the product.

The JigCell modeling environment had problems more funddatéhan what the requirements specification mea-
sures. A requirements specification is only useful when awvswé product already meets a minimal bar for quality.
This quality bar depends upon the level of detail of the resmaents specification. The requirements specification in
Chapter 5 focused on modeling activities that a modeleiopers on a model. This requirements specification there-
fore assumes that the measured software supports fundanestations on a model, such as loading and saving,
which the JigCell Model Builder could not do reliably in 2Q0fhe error was applying the requirements specification
to the JigCell modeling environment in 2004 and expectinggbomeaningful results.
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